Open Access iconOpen Access

ARTICLE

crossmark

Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN

Seema Sabharwal1,2,*, Priti Singla1

1 Department of Computer Science and Engineering, Baba Mastnath University, Rohtak, 124001, India
2 Department of Computer Science, Government Post Graduate College for Women, Panchkula, 134109, India

* Corresponding Author: Seema Sabharwal. Email: email

Intelligent Automation & Soft Computing 2023, 37(3), 2567-2582. https://doi.org/10.32604/iasc.2023.035497

Abstract

Sign language is used as a communication medium in the field of trade, defence, and in deaf-mute communities worldwide. Over the last few decades, research in the domain of translation of sign language has grown and become more challenging. This necessitates the development of a Sign Language Translation System (SLTS) to provide effective communication in different research domains. In this paper, novel Hybrid Adaptive Gaussian Thresholding with Otsu Algorithm (Hybrid-AO) for image segmentation is proposed for the translation of alphabet-level Indian Sign Language (ISLTS) with a 5-layer Convolution Neural Network (CNN). The focus of this paper is to analyze various image segmentation (Canny Edge Detection, Simple Thresholding, and Hybrid-AO), pooling approaches (Max, Average, and Global Average Pooling), and activation functions (ReLU, Leaky ReLU, and ELU). 5-layer CNN with Max pooling, Leaky ReLU activation function, and Hybrid-AO (5MXLR-HAO) have outperformed other frameworks. An open-access dataset of ISL alphabets with approx. 31 K images of 26 classes have been used to train and test the model. The proposed framework has been developed for translating alphabet-level Indian Sign Language into text. The proposed framework attains 98.95% training accuracy, 98.05% validation accuracy, and 0.0721 training loss and 0.1021 validation loss and the performance of the proposed system outperforms other existing systems.

Keywords

Sign language translation; CNN; thresholding; Indian sign language

Cite This Article

APA Style
Sabharwal, S., Singla, P. (2023). Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN. Intelligent Automation & Soft Computing, 37(3), 2567–2582. https://doi.org/10.32604/iasc.2023.035497
Vancouver Style
Sabharwal S, Singla P. Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN. Intell Automat Soft Comput. 2023;37(3):2567–2582. https://doi.org/10.32604/iasc.2023.035497
IEEE Style
S. Sabharwal and P. Singla, “Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN,” Intell. Automat. Soft Comput., vol. 37, no. 3, pp. 2567–2582, 2023. https://doi.org/10.32604/iasc.2023.035497



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1092

    View

  • 814

    Download

  • 0

    Like

Share Link