Open Access iconOpen Access

ARTICLE

crossmark

Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification

Mohammad Yamin1,*, Mishaal Mofleh Almutairi2, Saeed Badghish3, Saleh Bajaba4

1 Department of Management Information Systems, Faculty of Economics and Administration, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
2 School of Math, Comp. Sc. and Engg, Department of Electrical and Electronic Engg., London, UK
3 Department of Marketing, Faculty of Economics and Administration, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
4 Department of Business Administration, Faculty of Economics and Administration, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

* Corresponding Author: Mohammad Yamin. Email: email

Computers, Materials & Continua 2023, 74(3), 4965-4981. https://doi.org/10.32604/cmc.2023.033705

Abstract

Due to the rapid increase in urbanization and population, crowd gatherings are frequently observed in the form of concerts, political, and religious meetings. HAJJ is one of the well-known crowding events that takes place every year in Makkah, Saudi Arabia. Crowd density estimation and crowd monitoring are significant research areas in Artificial Intelligence (AI) applications. The current research study develops a new Sparrow Search Optimization with Deep Transfer Learning based Crowd Density Detection and Classification (SSODTL-CD2C) model. The presented SSODTL-CD2C technique majorly focuses on the identification and classification of crowd densities. To attain this, SSODTL-CD2C technique exploits Oppositional Salp Swarm Optimization Algorithm (OSSA) with EfficientNet model to derive the feature vectors. At the same time, Stacked Sparse Auto Encoder (SSAE) model is utilized for the classification of crowd densities. Finally, SSO algorithm is employed for optimal fine-tuning of the parameters involved in SSAE mechanism. The performance of the proposed SSODTL-CD2C technique was validated using a dataset with four different kinds of crowd densities. The obtained results demonstrated that the proposed SSODTL-CD2C methodology accomplished an excellent crowd classification performance with a maximum accuracy of 93.25%. So, the proposed method will be highly helpful in managing HAJJ and other crowded events.

Keywords


Cite This Article

APA Style
Yamin, M., Almutairi, M.M., Badghish, S., Bajaba, S. (2023). Sparrow search optimization with transfer learning-based crowd density classification. Computers, Materials & Continua, 74(3), 4965-4981. https://doi.org/10.32604/cmc.2023.033705
Vancouver Style
Yamin M, Almutairi MM, Badghish S, Bajaba S. Sparrow search optimization with transfer learning-based crowd density classification. Comput Mater Contin. 2023;74(3):4965-4981 https://doi.org/10.32604/cmc.2023.033705
IEEE Style
M. Yamin, M.M. Almutairi, S. Badghish, and S. Bajaba, “Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification,” Comput. Mater. Contin., vol. 74, no. 3, pp. 4965-4981, 2023. https://doi.org/10.32604/cmc.2023.033705



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 865

    View

  • 484

    Download

  • 0

    Like

Share Link