Open Access iconOpen Access

ARTICLE

crossmark

A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting

Saqib Ali1,2, Shazia Riaz2,3, Safoora2, Xiangyong Liu1, Guojun Wang1,*

1 School of Computer Science Guangzhou University, Guangzhou, 510006, Guangdong Province, China
2 Department of Computer Science, University of Agriculture, Faisalabad, 38000, Pakistan
3 Department of Computer Science, Government College Women University, Faisalabad, 38000, Pakistan

* Corresponding Author: Guojun Wang. Email: email

Computers, Materials & Continua 2023, 75(1), 1783-1800. https://doi.org/10.32604/cmc.2023.035736

Abstract

Short-term load forecasting (STLF) is part and parcel of the efficient working of power grid stations. Accurate forecasts help to detect the fault and enhance grid reliability for organizing sufficient energy transactions. STLF ranges from an hour ahead prediction to a day ahead prediction. Various electric load forecasting methods have been used in literature for electricity generation planning to meet future load demand. A perfect balance regarding generation and utilization is still lacking to avoid extra generation and misusage of electric load. Therefore, this paper utilizes Levenberg–Marquardt (LM) based Artificial Neural Network (ANN) technique to forecast the short-term electricity load for smart grids in a much better, more precise, and more accurate manner. For proper load forecasting, we take the most critical weather parameters along with historical load data in the form of time series grouped into seasons, i.e., winter and summer. Further, the presented model deals with each season’s load data by splitting it into weekdays and weekends. The historical load data of three years have been used to forecast week-ahead and day-ahead load demand after every thirty minutes making load forecast for a very short period. The proposed model is optimized using the Levenberg-Marquardt backpropagation algorithm to achieve results with comparable statistics. Mean Absolute Percent Error (MAPE), Root Mean Squared Error (RMSE), R2, and R are used to evaluate the model. Compared with other recent machine learning-based mechanisms, our model presents the best experimental results with MAPE and R2 scores of 1.3 and 0.99, respectively. The results prove that the proposed LM-based ANN model performs much better in accuracy and has the lowest error rates as compared to existing work.

Keywords


Cite This Article

APA Style
Ali, S., Riaz, S., Safoora, , Liu, X., Wang, G. (2023). A levenberg–marquardt based neural network for short-term load forecasting. Computers, Materials & Continua, 75(1), 1783-1800. https://doi.org/10.32604/cmc.2023.035736
Vancouver Style
Ali S, Riaz S, Safoora , Liu X, Wang G. A levenberg–marquardt based neural network for short-term load forecasting. Comput Mater Contin. 2023;75(1):1783-1800 https://doi.org/10.32604/cmc.2023.035736
IEEE Style
S. Ali, S. Riaz, Safoora, X. Liu, and G. Wang "A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting," Comput. Mater. Contin., vol. 75, no. 1, pp. 1783-1800. 2023. https://doi.org/10.32604/cmc.2023.035736



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 701

    View

  • 475

    Download

  • 0

    Like

Share Link