Open Access iconOpen Access

ARTICLE

crossmark

Adaptive Noise Detector and Partition Filter for Image Restoration

Cong Lin1, Chenghao Qiu1, Can Wu1, Siling Feng1,*, Mengxing Huang1,2,*

1 School of Information and Communication Engineering, Hainan University, Haikou, 570228, China
2 State Key Laboratory of Marine Resource Utilization in South China Sea, HainanUniversity, Haikou, 570228, China

* Corresponding Authors: Siling Feng. Email: email; Mengxing Huang. Email: email

Computers, Materials & Continua 2023, 75(2), 4317-4340. https://doi.org/10.32604/cmc.2023.036249

Abstract

The random-value impulse noise (RVIN) detection approach in image denoising, which is dependent on manually defined detection thresholds or local window information, does not have strong generalization performance and cannot successfully cope with damaged pictures with high noise levels. The fusion of the K-means clustering approach in the noise detection stage is reviewed in this research, and the internal relationship between the flat region and the detail area of the damaged picture is thoroughly explored to suggest an unique two-stage method for gray image denoising. Based on the concept of pixel clustering and grouping, all pixels in the damaged picture are separated into various groups based on gray distance similarity features, and the best detection threshold of each group is solved to identify the noise. In the noise reduction step, a partition decision filter based on the gray value characteristics of pixels in the flat and detail areas is given. For the noise pixels in flat and detail areas, local consensus index (LCI) weighted filter and edge direction filter are designed respectively to recover the pixels damaged by the RVIN. The experimental results show that the accuracy of the proposed noise detection method is more than 90%, and is superior to most mainstream methods. At the same time, the proposed filtering method not only has good noise reduction and generalization performance for natural images and medical images with medium and high noise but also is superior to other advanced filtering technologies in visual effect and objective quality evaluation.

Keywords


Cite This Article

APA Style
Lin, C., Qiu, C., Wu, C., Feng, S., Huang, M. (2023). Adaptive noise detector and partition filter for image restoration. Computers, Materials & Continua, 75(2), 4317-4340. https://doi.org/10.32604/cmc.2023.036249
Vancouver Style
Lin C, Qiu C, Wu C, Feng S, Huang M. Adaptive noise detector and partition filter for image restoration. Comput Mater Contin. 2023;75(2):4317-4340 https://doi.org/10.32604/cmc.2023.036249
IEEE Style
C. Lin, C. Qiu, C. Wu, S. Feng, and M. Huang "Adaptive Noise Detector and Partition Filter for Image Restoration," Comput. Mater. Contin., vol. 75, no. 2, pp. 4317-4340. 2023. https://doi.org/10.32604/cmc.2023.036249



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 676

    View

  • 448

    Download

  • 0

    Like

Share Link