Open Access iconOpen Access

ARTICLE

crossmark

A Novel Approach Based on Graph Attention Networks for Fruit Recognition

Dat Tran-Anh1, Hoai Nam Vu2,3,*

1 Faculty of Information Technology, Thuyloi University, Ha Noi, 100000, Viet Nam
2 Faculty of Artificial Intelligence, Posts and Telecommunications Institute of Technology, Nguyen Trai, Ha Noi, 100000, Viet Nam
3 Young Innovation Research Laboratory on Digital Technology (YIRLoDT), Posts and Telecommunications Institute of Technology, Nguyen Trai, Ha Noi, 100000, Viet Nam

* Corresponding Author: Hoai Nam Vu. Email: email

Computers, Materials & Continua 2025, 82(2), 2703-2722. https://doi.org/10.32604/cmc.2025.061086

Abstract

Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing issue, we introduce iGFruit, an innovative model designed to enhance the detection of counterfeit agricultural products by integrating multimodal data processing. Our approach utilizes both image and text data for comprehensive feature extraction, employing advanced backbone models such as Vision Transformer (ViT), Normalizer-Free Network (NFNet), and Bidirectional Encoder Representations from Transformers (BERT). These extracted features are fused and processed using a Graph Attention Network (GAT) to capture intricate relationships within the multimodal data. The resulting fused representation is subsequently classified to detect counterfeit products with high precision. We validate the effectiveness of iGFruit through extensive experiments on two datasets: the publicly available MIT-States dataset and the proprietary TLU-States dataset, achieving state-of-the-art performance on both benchmarks. Specifically, iGFruit demonstrates an improvement of over 3% in average accuracy compared to baseline models, all while maintaining computational efficiency during inference. This work underscores the necessity and innovativeness of integrating graph-based feature learning to tackle the critical issue of counterfeit agricultural product detection.

Keywords

Fruit recognition; graph attention network; multi-feature processing

Cite This Article

APA Style
Tran-Anh, D., Vu, H.N. (2025). A Novel Approach Based on Graph Attention Networks for Fruit Recognition. Computers, Materials & Continua, 82(2), 2703–2722. https://doi.org/10.32604/cmc.2025.061086
Vancouver Style
Tran-Anh D, Vu HN. A Novel Approach Based on Graph Attention Networks for Fruit Recognition. Comput Mater Contin. 2025;82(2):2703–2722. https://doi.org/10.32604/cmc.2025.061086
IEEE Style
D. Tran-Anh and H. N. Vu, “A Novel Approach Based on Graph Attention Networks for Fruit Recognition,” Comput. Mater. Contin., vol. 82, no. 2, pp. 2703–2722, 2025. https://doi.org/10.32604/cmc.2025.061086



cc Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1183

    View

  • 459

    Download

  • 0

    Like

Share Link