Open Access iconOpen Access

ARTICLE

Handling Stagnation in Differential Evolution Using Elitism Centroid-Based Operations

Li Ming Zheng, Jun Ting Luo*

School of Information Science and Technology, Jinan University, Guangzhou, 510632, China

* Corresponding Author: Jun Ting Luo. Email: email

Computers, Materials & Continua 2025, 84(2), 2473-2494. https://doi.org/10.32604/cmc.2025.063347

Abstract

Differential evolution (DE) algorithms are simple and efficient evolutionary algorithms that perform well in various optimization problems. Unfortunately, they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems (e.g., real-world artificial neural network (ANN) training problems). To resolve this issue, this paper proposes a framework based on an efficient elite centroid operator. It continuously monitors the current state of the population. Once stagnation is detected, two dedicated operators, centroid-based mutation (CM) and centroid-based crossover (CX), are executed to replace the classical mutation and binomial crossover operations in DE. CM and CX are centred on the elite centroid composed of multiple elite individuals, constituting a framework consisting of elitism centroid-based operations (CMX) to improve the performance of the individuals who fall into stagnation. In CM, elite centroid provide evolutionary direction for stagnant individuals, and in CX, elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population. The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations. Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.

Keywords

Differential evolution; stagnation; centroid-based mutation and crossover

Supplementary Material

Supplementary Material File

Cite This Article

APA Style
Zheng, L.M., Luo, J.T. (2025). Handling Stagnation in Differential Evolution Using Elitism Centroid-Based Operations. Computers, Materials & Continua, 84(2), 2473–2494. https://doi.org/10.32604/cmc.2025.063347
Vancouver Style
Zheng LM, Luo JT. Handling Stagnation in Differential Evolution Using Elitism Centroid-Based Operations. Comput Mater Contin. 2025;84(2):2473–2494. https://doi.org/10.32604/cmc.2025.063347
IEEE Style
L. M. Zheng and J. T. Luo, “Handling Stagnation in Differential Evolution Using Elitism Centroid-Based Operations,” Comput. Mater. Contin., vol. 84, no. 2, pp. 2473–2494, 2025. https://doi.org/10.32604/cmc.2025.063347



cc Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 312

    View

  • 89

    Download

  • 0

    Like

Share Link