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ABSTRACT

Social media has revolutionized the dissemination of real-life information, serving as a robust platform for sharing
life events. Twitter, characterized by its brevity and continuous flow of posts, has emerged as a crucial source
for public health surveillance, offering valuable insights into public reactions during the COVID-19 pandemic.
This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text
classification on a dataset of COVID-19 outbreak-related tweets. Diverse topic modeling approaches have been
employed to extract pertinent themes and subsequently form a dataset for training text classification models. An
assessment of coherence metrics revealed that the Gibbs Sampling Dirichlet Mixture Model (GSDMM), which
utilizes trigram and bag-of-words (BOW) feature extraction, outperformed Non-negative Matrix Factorization
(NMF), Latent Dirichlet Allocation (LDA), and a hybrid strategy involving Bidirectional Encoder Representations
from Transformers (BERT) combined with LDA and K-means to pinpoint significant themes within the dataset.
Among the models assessed for text clustering, the utilization of LDA, either as a clustering model or for
feature extraction combined with BERT for K-means, resulted in higher coherence scores, consistent with human
ratings, signifying their efficacy. In particular, LDA, notably in conjunction with trigram representation and BOW,
demonstrated superior performance. This underscores the suitability of LDA for conducting topic modeling,
given its proficiency in capturing intricate textual relationships. In the context of text classification, models
such as Linear Support Vector Classification (LSVC), Long Short-Term Memory (LSTM), Bidirectional Long
Short-Term Memory (BiLSTM), Convolutional Neural Network with BiLSTM (CNN-BiLSTM), and BERT have
shown outstanding performance, achieving accuracy and weighted F1-Score scores exceeding 80%. These results
significantly surpassed other models, such as Multinomial Naive Bayes (MNB), Linear Support Vector Machine
(LSVM), and Logistic Regression (LR), which achieved scores in the range of 60 to 70 percent.
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1 Introduction

The COVID-19 pandemic is caused by the Severe Acute Respiratory Syndrome-Coronavirus-
2 (SARS-CoV-2) virus, which was first discovered in Wuhan, China, and has rapidly spread to
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many countries around the world. The World Health Organization (WHO) declared the outbreak
a pandemic on March 11, 2020 [1]. The pandemic has continued to spread in many waves due to the
emergence of numerous variants, some of which have caused severe outbreaks. One example is the
B.1.1.529 variant of the SARS-CoV-2 virus, which was first identified in Gauteng province, South
Africa, and has been designated as the Omicron variant by the WHO. The Omicron variant has
spread rapidly, surpassing the previously dominant Delta variant in many countries, thereby sparking
significant concern and discussion on social media.

According to a report by Recode [2], online posts concerning Omicron has exhibited a prevalence
six times greater than that of Delta during the equivalent timeframe. Comments by users on social
media regarding the widespread outbreak of various strains of COVID-19 have prompted an opera-
tional meeting on natural language processing [3]. The meeting emphasized the potential for natural
language processing (NLP) to respond to the ongoing epidemic by collecting scientific literature for
data analysis of social media and disseminating natural language datasets concerning COVID-19
topics. Textual exchanges on social media platforms like Twitter and Facebook can be grouped for
topic modeling, providing continuous tracking and evaluation of epidemic development [4].

Twitter is a widely used online social media platform. Rathore et al. demonstrated that Twitter is
the most popular online social media platform when compared to others, owing to its diverse range of
applications. Data from Twitter can be easily collected and analyzed by using keywords or hashtags.
The ease of data collection using APIs makes deep analysis of Twitter data more convenient, which is
often lacking in other platforms. Many studies have used Twitter data to analyze the early stages of
the COVID-19 pandemic, with data ranging from hundreds of thousands to millions of tweets. These
studies have provided insights into how Twitter users react to the pandemic and their concerns during
the initial phases of the outbreak [1].

An approach to utilizing NLP in Twitter data analysis is to create an unsupervised model for
topic modeling. Topic modeling is considered as one of the fundamental tasks in applying machine
learning techniques. This research focuses on studying literature related to topic modeling. Several
methods have proven effective in analyzing long texts, but they yield varying results when applied
to short texts, particularly user-generated content (UGC) on online social media platforms. UGC
presents specific challenges, such as incorrect spelling, slang usage, data sparsity, and the co-occurrence
of infrequent words. To address these challenges, research has been conducted to compare the
performance of different topic modeling techniques, including Latent Semantic Analysis (LSA), LDA,
NMF, Principal Component Analysis (PCA), and Random Projection (RP) [5,6], using metrics such
as Recall, Precision, F-Score, and Topic Coherence. Evaluation results indicate that LDA and NMF
consistently demonstrate strong performance in topic modeling [7,8]. Furthermore, in reviewing the
field of short text modeling, additional experiments have been conducted. Yong Chen and colleagues
conducted a series of experiments to compare basic LDA and NMF with different settings on public
short text datasets, finding that NMF tends to outperform LDA. This finding is consistent with the
work of Zoya et al., who conducted experiments to cluster the topics of Urdu tweet text using LSA,
PLSA, LDA, and NMF. They observed that NMF outperformed the other methods when used in
conjunction with term frequency-inverse document frequency (TF-IDF) and bigram on the dataset.
However, LDA provided the best results when used to cluster topics in a dataset that combined short
text with pseudo documents [9].

In the context of COVID-19-related datasets, Mifrah et al. conducted experiments to classify
topics using NMF and LDA, comparing their performance with the C_v measure. Their findings
indicated that LDA outperformed NMF in terms of topic coherence scores [10]. Weisser et al. also
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conducted experiments on topic classification using a COVID-19 outbreak dataset from Twitter. They
used GSDMM and GPM, specifically designed for sparse text data, and compared them with LDA.
Their results revealed that both GSDMM and GPM were more effective at generating topics than
LDA [11]. Ridhwan et al. utilized LDA to determine the suitable number of topics for GSDMM as a
parameter, which resulted in improved topic classification compared to using LDA alone [1].

In topic modeling tasks that emphasize feature extraction, Subakti et al. used BERT, a DNN
model for data representation, and compared it to using TF-IDF with multiple clustering models. The
results showed that BERT outperformed TF-IDF, even when used with several clustering models such
as K-means [12]. Atagun et al. conducted experiments using BERT+LDA to generate vector repre-
sentations for topic modeling, which yielded superior results compared to TF-IDF [13]. In addition,
Sethia et al. conducted experiments on topic classification using the 20-Newsgroup dataset, employing
a Hybrid BERT and LDA model. They used BERT and LDA for vector representation along with K-
means clustering for topic modeling and compared this approach to other word embedding techniques,
such as Word2Vec and Doc2Vec. The findings demonstrated that the proposed method achieved
the highest NMI scores [14]. Furthermore, Lande et al. presented a topic modeling framework
for extracting topics from a Twitter dataset related to COVID-19 in India. They used a BERT-
based word embedding technique and applied Uniform Manifold Approximation and Projection
(UMAP) for dimensionality reduction and clustering via HDBSCAN. This framework was compared
to GSDMM and LDA, and the experimental results revealed superior performance in terms of topic
coherence [15].

In addition to topic modeling, text classification is an ongoing process that requires learning
from labeled datasets to apply the classifier to new types of text on Twitter. Various models are
used for text classification, including traditional, DNN, and hybrid models. For instance, González-
Carvajal et al. compared BERT with traditional models such as LR, Linear SVC, and Multinomial
MB for text classification on the IMDB dataset. Their study demonstrated that BERT outperformed
the traditional models, highlighting the potential of advanced models like BERT in enhancing text
classification accuracy [16]. Benítez-Andrades et al. conducted experiments involving the classification
of racism and xenophobia texts from Twitter using CNN, LSTM, BERT, and BETO, a BERT-Based
Spanish pre-trained model. The findings showed that BETO performed the best in their experiment
[17]. Additionally, a comparison between BERT and LSTM for text classification in a small dataset
revealed that LSTM slightly outperformed BERT. It is important to note that these results depend
on various factors, including the dataset and hyperparameter tuning [18]. Mohd et al. used CNN and
CNN-LSTM and found that traditional models with BOW or TF-IDF as vector representation were
not suitable for datasets with data sparsity. In their experiment, CNN-LSTM performed better [19].
A hybrid CNN-BiLSTM attention ensemble was proposed and compared with various traditional
and DNN models. The results indicated that the proposed model provided better results in multiclass
text classification task [20,21]. Meanwhile, Alhaj et al. [22] conducted text classification experiments
for the Arabic language using both traditional models including MNB, LR, SVC, LSVM and DNN.
Surprisingly, their evaluation found that traditional models, such as SVC and LSVM, outperformed
the DNN. Furthermore, optimizing models to capture slight variations in topics may lead to skewed
results in specific directions. This underscores the unreliability of relying solely on a single topic model,
emphasizing the necessity of comparing diverse algorithms [23].

Therefore, based on the issues mentioned above, this paper presents a study that utilizes NLP
techniques to achieve beneficial outcomes. This research applied the various techniques mentioned
earlier for two main purposes. The first purpose was to create a topic modeling model for classifying
topics mentioned by Twitter users regarding the spread of COVID-19, utilizing a dataset of comments
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on Twitter related to the outbreak of COVID-19. The second purpose of the experiment was to find
an optimal model for classifying text that references COVID-19, achieved by training it with a labeled
dataset obtained from the topic modeling model created in the initial experiment. The benefit of this
experiment lies in its potential to apply these models for monitoring the outbreak of COVID-19 or
other diseases caused by various coronaviruses that may emerge in the future through social media.

2 Materials and Methods

The experimental process involves the following steps: First, the dataset is prepared by selecting
relevant data and cleaning it for analysis. Next, topic models are created using three popular techniques
and a hybrid technique namely NMF, LDA, GSDMM, and BERT-LDA-K-means. The performance
of these models is compared using topic coherence metrics. The best-performing model is selected to
label the dataset for training several traditional and Deep Neural Network (DNN) text classification
models, which include MNB, LSVM, LSVC, LR, LSTM, BiLSTM, CNN-BiLSTM, and BERT.
Finally, the performance of these models is evaluated using standard evaluation metrics such as
precision, recall, and F1-Score. An overview of the experimental design is presented in Fig. 1, followed
by details of the methods and materials used in this study.

2.1 Collection of Tweets

This research utilized a dataset obtained from Twitter, in accordance with Twitter’s terms of service
and privacy policy for user data [24]. Twitter designates tweets as public data, and, as of the time of
writing this article, the use of this data for experimentation is considered compliant with both policies.
The data were collected using the Python library ‘snscrape’ [1] to retrieve tweets discussing COVID-19.
The tweets were limited to those written in English and retrieved between November 01, 2022 and July
07, 2023–a period highly relevant to the Omicron outbreak, with a substantial volume of comments
on Twitter [2]. The data retrieval area was centered on Bangkok with a radius of 1500 km, as specified
by the user’s location profile [25]. The dataset consisted of 120,344 tweets, with tweet lengths ranging
from 1 to 52 words and an average of 12 words. Prior to using the dataset to train models, it underwent
data preprocessing steps.

2.2 Data Preprocessing

The collected dataset underwent rigorous preprocessing prior to model training. This process
involved removing stop words, URLs, tags, and irrelevant content from tweets before lemmatization.
The lemmatized tweets were then tokenized into words or tokens to maintain semantic context. Both
bigram and trigram were employed to preserve the intended meaning, preventing phrases from splitting
into unigram tokens. These preprocessing techniques were integrated to enhance the efficiency of the
model in the experiment.

The experiment focused on topic modeling and text clustering for categorization. Topic modeling
relies on the distribution of content words, which were identified through string matching achieved by
lemmatizing their forms, ensuring consistency across documents. Lemmatization plays a vital role in
training word vectors, preventing disruptions caused by irrelevant inflections such as plurals or present
tense forms. Notably, only function words that had a minimal impact on meaning were removed during
preprocessing, preserving the textual essence.

In this study, data preprocessing techniques were applied to all topic modeling methods except
BERT, which utilizes self-attention mechanisms. These preprocessing steps were instrumental in
ensuring the quality and relevance of the data used for the analysis.
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Figure 1: An overview of the experimental design
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2.3 Feature Extraction Techniques

Given the short text nature of the dataset, this research employed various feature extraction
techniques while taking into account the context of the words. These techniques included the use
of bigram and trigram tokenization and the application of BOW [26–28] and TF-IDF [22,29,30]
weighting to enhance the features. Additionally, DNNs like BERT were utilized to extract features,
along with LDA [13].

2.4 Topic Model Techniques

To identify the topics of the tweets in the dataset, this study employed established methodologies
for effective short-text topic modeling [7,8,14]. Fine-tuning of these models involved adjusting hyper-
parameters, guided by analogous research in the field. The experiment encompassed the evaluation
and comparison of four selected models, outlined as follows:

2.4.1 NMF

NMF is an unsupervised algorithm for topic modeling that falls under the category of multivariate
analysis and linear algebra. It excels in extracting significant terms that repeat within a corpus.
The corpus comprises various documents, with terms collectively forming the content, which can
be extracted as different topics embedded within each document. It is assumed that documents
with similarities also share similar topics and frequency distribution of words. The NMF method
involves the factorization of the document-term matrix V, where each element is non-negative. This
factorization results in the product of two lower rank matrices, namely the document-topic matrix W
and the topic-term matrix H, such that V is approximately equal to W × H. This is formally expressed
as:

V ≈ WH (1)

In matrix V, vectors are arranged in dimensions n × m, where m represents the number of word
tokens for each of m terms in n documents. This matrix is then factorized into two matrices, W and
H, which have dimensions n × r and r × m, respectively. Each row in W represents a document and
comprises the probabilities of r topics, while each column represents a topic or a semantic feature
recurring throughout n documents. Matrix H, representing topics and terms, indicates the number of
word tokens for each of the m terms in r topics [31,32].

The implementation of NMF models was conduct by setting their hyperparameters based on
recommendations found in [27,31,32]. NMF, incorporating bigram and trigram features along with
either bag-of-words or TF-IDF representation, was employed for topic modeling. The range for topic
extraction range, spanning from 2 to 30, was determined following the precedents set in topic modeling
research, particularly from the work of Ridhwan et al. [1]. Subsequently, NMF was applied to the
preprocessed data to factorize the matrix into a document-topic matrix and a topic-word matrix. The
interpretation of topics involved examining the top 20 words associated with each topic and assigning
a label based on these words. Finally, the quality of the topics was evaluated using metrics such as
coherence score and human evaluation.

The NMF models were configured with specific hyperparameters for optimal performance. These
parameters included ‘n_components’ (K), defining the number of topics to be extracted (set to k = 30),
‘beta_loss’ determining the distance measure within the objective function (specified as ‘frobenius’),
and the ‘solver’ attribute choosing the optimization method (‘mu’). Additionally, ‘max_iter’ was set
to impose a limit on the maximum iterations before convergence (established at 1000), while the



CSSE, 2024 7

initialization methods for the W and H matrices were set using the ‘nndsvda’ approach. The models
also incorporated ‘alpha’ as a multiplier for the regularization term (with a value of 5e-5) and employed
‘l1_ratio’ to define the type of regularization, allowing for pure L2 (0), pure L1 (1), or a blend of
both (ranging from 0 to 1). Specifically, the experiments conducted with the NMF models utilized a
‘l1_ratio’ value of 0.5.

2.4.2 LDA

LDA is a three-level Hierarchical Bayesian Model in which each document in the corpus is a
mixture of topics. Each topic is a probability distribution over the words, and finally, each word in the
document is attributed to a particular topic with probability given by the distribution. The process of
LDA is described through plate notation, as shown in Fig. 2.

Figure 2: Plate notation representing the LDA model [33]

Fig. 2 represents the LDA Model with plate notation. The boxes are “plates” representing
replicates. The outer plate represents documents, while the inner plate represents the repeated choice
of topics and words within a document. The many variable names are defined as follows: α is the
parameter of the Dirichlet prior on the per-document topic distributions, β is the parameter of the
Dirichlet prior on the per-topic word distribution. M denotes the number of documents. N is number
of words in a given document (document i has Ni words). θ is a joint distribution of a topic mixture,
θ i is the topic distribution for document i. φk is the word distribution for topic k where K denotes the
number of topics. Z is the latent topic assigned to a word, where Zij is the topic for the j-th word in
document i. Finally, W is the identity of the vocabulary set composed of ‘N’ words in all documents,
where Wij is the specific word.

In this study, LDA with bigram and trigram features and bag-of-words or TF-IDF representation
was employed for topic modeling. LDA models were utilized to analyze our dataset, exploring the
topic structure and underlying themes in the corpus. The number of topics ranged from 2 to 30, derived
from similar studies [8,10]. In LDA, the assignment of hyperparameters to the Dirichlet distributions
governing document-topic and topic-word relationships follows either a symmetric or asymmetric
approach.

LDA models in topic modeling commonly utilize symmetric configurations by default. In such
setups, the alpha and beta parameters play pivotal roles. Alpha determines document-topic density,
with higher values leading to documents encompassing a broader range of topics and lower values
indicating fewer topics within documents. Conversely, beta governs topic-word density, where higher
values imply that topics consist of more words from the corpus, and lower values suggest fewer words
per topic. In this study, alpha and beta were symmetrically set through uniform assignment. For the
symmetric configuration, alpha was set to 0.1 to achieve similar topic proportions, and beta was set
to 0.01 for uniform word distributions across topics.
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In contrast, asymmetric distributions allow for customized configurations tailored to specific
documents or topics. Higher alpha values result in more specific topic distributions per document,
while higher beta values lead to more focused word distributions per topic. In our implementation,
symmetric alpha and beta values were uniformly assigned as [0.01,0.03,0.1], and asymmetric beta was
set to [0.01,0.02,0.03,0.01].

2.4.3 GSDMM

Additionally, GSDMM utilized bigram and trigram features along with a bag-of-words represen-
tation for the purpose of topic modeling. GSDMM is a short-text clustering model that essentially
modifies LDA and assumes that a document ‘d’ in a corpus, consisting of ‘D’ documents (where d
= 1,..., D), is generated by a mixture model and is only about one topic. The GSDMM algorithm
is based on the “Movie Group Process” analogy, which explains its basic principle. In this analogy, a
group of students represents a set of documents, each with their favorite movies as words. The students
are randomly assigned to K tables, and the professor instructs them to shuffle tables with two goals in
mind: first, to find a table with more students, and second, to choose a table where their movie interests
align with those at the table. This process is repeated until a plateau is reached where the number of
clusters remains constant.

The important factors affecting clustering are setting the hyperparameter values of α and β. α

controls the cluster creation process, specifically, the number of tables that are removed when they
become empty, indirectly affecting the number of clusters formed. A higher value of α means that
fewer tables will be removed, resulting in a smaller number of clusters with larger sizes. In contrast, a
lower value of α means that more tables will be removed, leading to a larger number of smaller clusters.
β determines the degree to which a data point is assigned to a cluster based on the similarity between
the data point and the cluster. A lower value of beta results in a greater tendency for a data point to
be assigned to a cluster that is more similar to it, rather than to a more popular cluster. Conversely, a
higher value of beta leads to a greater tendency for a data point to be assigned to a more popular cluster,
regardless of its similarity to that cluster. In this study, the GSDMM were applied to the dataset by
setting the hyperparameters α = 0.1 and β = 0.1 as recommended in [11] and the number of iterations
for GSDMM was set to 40 due to the algorithm’s efficiency in convergence, as mentioned in [2]. The
topic range (from 2 to 30 topics) was defined similarly to the previously used LDA model.

2.4.4 BERT-LDA-K-Means

BERT is a pre-trained language model that uses deep learning techniques to understand the
meaning and context of words in natural language text. Identifying topics using bag-of-words
information (LDA) is effective when texts are coherent and contain frequent words. However, when
texts are incoherent in terms of word choice or sentence meaning, additional contextual information is
required to comprehensively capture the intended meaning. While K-means clustering is a simple and
efficient unsupervised machine learning algorithm that can partition a dataset into K clusters based
on similarities between data points, its performance depends on several factors, such as the choice of
K, initialization of cluster centroids, and distance metric used to measure the similarity between data
points. The algorithm assumes that the clusters have spherical shapes and similar sizes, which may not
always be the case in real-world datasets with complex shapes and non-uniform sizes.

To address these limitations, integrating LDA, BERT, and K-means clustering in a combination
of bag-of-words and contextual information can preserve semantic details and facilitate the creation
of contextual topic identification. This approach allows for the identification of topics in a more
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comprehensive and nuanced manner, overcoming the constraints associated with using bag-of-words
or K-means clustering alone [12,13].

To conduct the experiments, several techniques were applied to identify topics in the corpus.
Firstly, LDA was used to assign a probabilistic topic vector to each document. Secondly, BERT was
employed to generate sentence embedding vectors, capturing the meaning and context of the text. The
LDA and BERT vectors were then concatenated with a weight hyperparameter, balancing the relative
importance of information from each source. Next, an autoencoder was utilized to learn a lower-
dimensional latent space representation of the concatenated vector, assuming that the concatenated
vector would have a manifold shape in the high-dimensional space. Finally, K-means clustering was
performed on the latent space representations to obtain the topics. Overall, this approach combines
the strengths of LDA and BERT while also leveraging the power of autoencoders and clustering to
identify topics in the corpus.

2.4.5 Propose Topic Modeling Models

In this research, different techniques with various feature representations and parameter settings
are explored to identify the most effective approach for the dataset. The models used in this experiment
include both feature-based and hybrid models. The Feature-Based models consist of NMF, LDA, and
GSDMM models with bigram and trigram Bag-of-Words and TF-IDF feature vectors, respectively.
These models are named as follows: NMF-Bi-BOW, NMF-Tri-BOW, NMF-Bi-TFIDF, NMF-Tri-
TFIDF, LDA-Bi-BOW, LDA-Tri-BOW, LDA-Bi-TFIDF, LDA-Tri-TFIDF, GSDMM-Bi-BOW, and
GSDMM-Tri-BOW. In addition, the Hybrid models include BERT-LDA-K-means. The aim is to
determine the optimal technique for extracting topics from the dataset by comparing the results of
these models.

2.5 Topic Modeling Evaluation Metrics

Topic coherence measures are used to evaluate the quality of topics by quantifying the degree of
semantic similarity among the top-scoring words within a topic [34]. These metrics aid in distinguish-
ing between topics that are semantically meaningful and those that are simple statistical artifacts. Four
distinct coherence measures, namely, C_v, C_npmi, C_umass, and C_uci, were employed to assess the
coherence of topics based on different criteria. These measures provide unique ways to evaluate topic
coherence. Here, we provide a brief overview of the different coherence measures and how they are
calculated [9]: C_v uses a sliding window approach with a one-set segmentation of the top words, along
with normalized pointwise mutual information (NPMI) and cosine similarity as indirect confirmation
measures. C_uci utilizes a sliding window approach and calculates the pointwise mutual information
(PMI) of all the word pairs within the given top words. C_umass uses document co-occurrence counts
and a one-preceding segmentation along with logarithmic conditional probability as the confirmation
measure. Finally, C_npmi is an improved version of C_uci coherence that uses NPMI instead of PMI.
Comparing the results from different coherence measures to provide a more comprehensive evaluation
of the coherence of topics can help in selecting the most appropriate measure for a particular dataset.
As each coherence measure evaluates coherence based on different criteria, choosing the most suitable
measure for a specific task is crucial.

2.6 Model Selection

To select the appropriate model, two factors were taken into consideration: topic coherence scores
for each model and number of topics. The aim was to identify models with high coherence scores across
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all four metrics while ensuring that the number of topics was not excessive. Having too many topics
can lead to overfitting, making interpretation difficult for humans.

For each set of generated topics, the top 15 words from each topic were presented to five human
raters with expertise in tweet-related terminology. They were instructed to rate the coherence and
interpretability of each topic on a scale of 1–5, where 1 represented the lowest and 5 the highest
rating. Average rating were calculated for each topic across all raters. Subsequently, Cohen’s Kappa was
employed to assess the obtained scores for inter-rater agreement [9]. This measure quantifies agreement
beyond chance for two or multiple raters by comparing observed agreement to chance agreement, using
the formula:

K = P0 − Pe

1 − Pe

(2)

where:

• P0 is the observed agreement.
• Pe is the expected agreement by chance.

This statistic extends to assess agreement among multiple parties, providing a reliable measure
of consistency in evaluations. The model and the corresponding number of topics that received the
highest average ratings were used to cluster and label the dataset.

2.7 Data Splitting

The classification process involved training the models using a labeled dataset. The labeled dataset
was divided into three independent sets: a training set, a testing set, and a validation set, with
proportions of 70%, 15%, and 15%, respectively. The training set was utilized for model training,
while the validation set was employed to prevent bias during hyperparameter tuning. Finally, the test
set was reserved for unbiased evaluation of the final models. An examination of the dataset reveals
an imbalanced distribution, as shown in Fig. 4. To address this imbalance, a subset of the dataset was
randomly sampled for experimentation using Stratified Sampling. This technique is used to obtain
representative samples from a population by dividing them into homogeneous subcategories known
as strata and then randomly sampling the data from each stratum. Stratified Sampling reduces bias
in sample selection while preserving the proportional distribution of the training and testing datasets
from the original dataset.

2.8 Text Classification Techniques

The objective of the experiment was to identify a suitable model for multiclass classification in
this task. Several models were leveraged in the experiment to compare their performance, selected
from those mentioned in the introduction, using traditional machine learning models with a strong
track record in text classification as a baseline. Additionally, deep neural networks were selected for
performance comparison [19]. The traditional models employed in this study included MNB, LSVC,
LSVM, and LR. These models were implemented using the scikit-learn library, with MNB utilizing the
MultinomialNB implementation, LSVC employing LinearSVC, and LSVM and LR constructed using
SGDClassifier. To enhance their performance, various feature extraction techniques were explored,
including the use of a counter vectorizer with different n-grams and TF-IDF representations [20,26].
The hyperparameters for each model were fine-tuned using GridSearchCV [35] to obtain optimal
configurations. For further analysis, DNN models, including LSTM, BiLSTM, a variant of the LSTM
architecture, and a hybrid CNN+BiLSTM [21], were used. Finally, their performance was compared
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with that of BERT, a transformer-based neural network. To control the training process, prevent
overfitting, and enhance the model’s generalization performance, early stopping was experimented
with [17]. Further details of the DNN models are provided below:

2.8.1 LSTM

The LSTM model is structured with four layers [36–38]. The first layer is an embedding layer for
the matrix of word vectors, followed by an LSTM layer with 128 LSTM units. Two dense layers are
incorporated into the model: the first dense layer, consisting of a feed-forward neural network with 64
units, interprets the LSTM output, and the second dense layer, comprising 16 units, is responsible for
producing a final output for the classification of 16 classes. The activation function used in the first
dense layer is ReLU, while the final dense layer employs Softmax for multiclass classification.

2.8.2 BiLSTM

The BiLSTM model consists of two LSTM layers, one processing the sequence in the forward
direction, and the other processing it in the backward direction [36–38]. In addition, a four-layer
BiLSTM model was implemented [38] with the following architecture: an embedding layer for the
matrix of word vectors, a BiLSTM layer featuring 128 BiLSTM units, and dropout set at 0.25 to
prevent overfitting. Two dense layers were used, with the first serving as a feed-forward neural network
with 64 units to interpret the LSTM output, and the second dense layer, consisting of 16 units, was
responsible for producing the final output for the classification of 16 classes. The first dense layer
utilized the ReLU activation function, whereas the Softmax activation function was used in the final
dense layer for multiclass classification.

2.8.3 CNN-BiLSTM

A combination of CNN and BiLSTM is used for multiclass classification. First, a CNN is used
to extract features from the corpus by passing the data through the CNN layers to learn essential
features from the input. The CNN output consists of a sequence of feature vectors. In the second step,
the sequence of feature vectors obtained from the CNN is fed into the BiLSTM layer [20], which learns
both features and their temporal dependencies. Finally, the output of the BiLSTM layer is forwarded
through a fully connected layer with a softmax activation function to perform multiclass classification.
The CNN-BiLSTM model is structured with five layers, commencing with an embedding layer that
handles a matrix of word vectors. This is followed by a convolutional layer with a kernel size ranging
from [3 × 3] to [5 × 5]. Subsequently, a BiLSTM layer with 128 BiLSTM units is employed. Two dense
layers are incorporated into the model, with the first being a feed-forward neural network featuring
64 units, responsible for interpreting the BiLSTM output. The second dense layer consists of 16 units
and produced the final output for classifying 16 classes. The ReLU activation function is used in the
CNN layer and the first dense layer, while Softmax activation is employed in the final dense layer for
multiclass classification.

2.8.4 BERT

Among the various methods available for multiclass text classification in English, the bert-base-
uncased model of BERT, which is a pretrained model specifically designed for this task, was utilized.
The model underwent fine-tuned using the labeled dataset to adapt it to a specific classification task.
The fine-tuning process began with the pre-processing the text documents by tokenization, which
involves splitting text into individual tokens and converting them into numerical representations
suitable for the input of the BERT model. For this purpose, the bert-base-uncased model was
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employed. Following pre-processing, the BERT model was trained on the preprocessed dataset using
a cross-entropy loss function, known for its suitability in multiclass classification tasks. The cross-
entropy loss measures the dissimilarity between predicted and true labels. To update the model
parameters during training, an AdamW optimizer with various learning rates was utilized to optimal
performance [17]. In the training process, a batch size ranging from 32 to 64 was employed. The
batch size determines the number of samples processed during each iteration of the training algorithm.
The fine-tuning approach involving BERT, the use of cross-entropy loss, AdamW optimizer, and the
optimization of batch size collectively contributed to the effective training of the model, ensuring
accurate multiclass text classification.

2.9 Regularization Technique

Early stopping is employed as a regularization technique in models to mitigate overfitting and
improve generalization performance. It entails monitoring the model’s performance on a separate
validation dataset during training and terminating the training process when the model’s performance
plateaus or begins to decline. By employing early stopping, the goal was to prevent overfitting by
discontinuing the training before the model becomes excessively specialized for the training data, which
could lead to suboptimal performance on unseen data [17,39].

To implement early stopping for LSVM and LR, the early stopping variable was activated in
accordance with the specifications provided in Table 1. The stopping criterion was based on validation
scores. However, MNB and LSVC models lack predefined stopping criteria. Consequently, exhaustive
training and evaluation of the models were conducted to consider all the hyperparameter combinations
within the defined grid search space. A portion of the training data was set aside to create a validation
dataset for DNN models. After each training epoch, the performance of the model was assessed by
monitoring the validation loss. The training process was stopped when the control metrics of the
validation set indicated a potential performance decline.

Table 1: The grid search space for the hyperparameters

Model Hyperameters and grid search space

MNB [22] ngram_range: [(1, 1), (1, 2), (1, 3)], use_idf: [True, False], fit_prior:
[True, False], alpha: [1e-2, 1e-1, 1e0, 1e1]

LSVC [22] ngram_range: [(1, 1), (1, 2), (1, 3)], use_idf: [True, False], loss:
[‘hinge’, ‘squared_hinge’], penalty: [‘l2’], multi_class: [‘ovr’,
‘crammer_singer’], fit_intercept: [True, False], random_state: [42],
max_iter: [900,1000,1100]

LSVM [22] ngram_range: [(1, 1), (1, 2), (1, 3)], use_idf: [True, False],
loss: [‘hinge’], penalty: [‘l2’, ‘l1’], alpha: [1e-5, 1e-4, 1e-3, 1e-2],
early_stopping: [True], max_iter: [1000, 1500], random_state: [42]

LR [22] ngram_range: [(1, 1), (1, 2), (1, 3)], use_idf: [True, False],
loss: [‘log’], penalty: [‘l2’, ‘l1’], alpha: [1e-5, 1e-4, 1e-3,
1e-2], early_stopping: [True], max_iter: [1000, 1500], random_state:
[42]

(Continued)
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Table 1 (continued)

Model Hyperameters and grid search space

LSTM [17,18,36,38] input_lenght: 250, learning_rate: [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
optimizer: Adam,batch_size: [32, 64], epochs: 8, loss:
categorical_crossentropy

BiLSTM [21] input_lenght: 250, learning_rate: [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
optimizer: Adam, batch_size: [32, 64], epochs: 8, loss:
categorical_crossentropy, dropout: 0.25

CNN-BiLSTM [19,21,28,30] kernel_size: [3x3, 5x5], input_lenght: 250, learning_rate: [1e-5, 1e-4,
1e-3, 1e-2, 1e-1], optimizer: Adam,batch_size: [32, 64], epochs: 8,
loss: categorical_crossentropy, dropout: 0.25

BERT [16,40] lr: [3e-5, 5e-5, 1e-4, 3e-4], eps: 1e-8, max_lenght: 64,
optimizer: AdamW, batch_size: [32, 64], epochs: 8

2.10 Hyperparameter Tuning for Text Classification Models

To ensure optimal model results, we employed GridSearchCV [35,39] for hyperparameter tuning.
GridSearchCV systematically explores a user-specified parameter grid to identify the best hyperparam-
eter combination for a given model. It generates and evaluates a set of hyperparameters by training
the model with each combination on the training data and assessing performance on a validation set.

The output of GridSearchCV provides the hyperparameter combination that maximizes the
model’s performance. To conduct hyperparameter tuning, a range of values for each hyperparameter
was defined, as detailed in Table 1.

Various approaches specific to each model were used to perform hyperparameter tuning. For
MNB, LSVM and LR models, different learning rates were tested on a logarithmic scale, starting
from the default values recommended by scikit-learn. In the case of LSTM-based models, the Adam
optimizer was employed and experimented with various learning rates, following guidance from Keras,
on a logarithmic scale.

The AdamW optimizer was employed for the BERT model, and different learning rates were tested
based on the original BERT model by Devlin et al. [40]. To evaluate the performance of each model,
they were trained using each learning rate. The performances of the models were assessed using a
validation set. The optimal learning rate was selected using the early stopping technique, which allowed
us to monitor model performance and stop training when no significant improvement was observed.

2.11 Text Classification Evaluation Metrics

The text classifiers used in the experiment were evaluated with four evaluation metrics: Precision,
Recall, Accuracy, and Weighted Average F1-Score. Precision is the ratio of true positives (TP) to the
total number of predicted positives (TP + FP), measuring the proportion of actual positives among the
instances predicted as positive. Recall is the ratio of true positives (TP) to the total number of actual
positives (TP + FN), measuring the proportion of actual positives that were correctly identified by
the model. Accuracy is the ratio of the total number of correctly classified instances (TP + TN) to the
total number of instances. The Weighted Average F1-Score is a variation of the F1-Score, calculated
as the harmonic mean of precision and recall, which addresses the class imbalance in the dataset by
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assigning a weight to each class based on the number of instances in that class. Here are the equations
for Accuracy, Precision, Recall, and Weighted Average F1-Score:

Accuracy = TP + TN
TP + FN + TN + FP

(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1 − Score = 2 Precision + Recall
Precision + Recall

(6)

Weighted F1 − Score =
∑N

i=1
wi · F1 − Scorei (7)

where F1-Scorei represents the F1-Score of the i-th class, and wi is the weight assigned to that class.

The F1-Score is employed in multiclass classification tasks due to its effectiveness in balancing
precision and recall, particularly in cases of imbalanced class distributions. It calculates the harmonic
mean of the precision and recall. To address the dataset’s imbalance, a weighted average F-Score was
chosen as the evaluation metric in the experiment.

2.12 Hardware and Software Utilized in the Experiments

To perform tweet pre-processing and implement machine learning methodologies, a Jupyter
notebook utilizing Python 3.6 was employed. The computational tasks were executed on a system
with an Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz processor, 6.00 GB of RAM, and an NVIDIA
GeForce RTX 3060 6 GB graphics card.

3 Results and Discussion

3.1 Topic Modeling

In the context of topic modeling experiments, our study trained and compared the performance of
NMF, LDA, GSDMM, and BERT-LDA-K-means models. These models were deployed with varied
word embedding and feature extraction techniques, trained across a range of topics (k) from 2 to 30.
The evaluation of model quality was conducted using four metrics, and the results are depicted in
Fig. 3.

The results presented in Fig. 3 encapsulate a comprehensive assessment of text clustering models,
scrutinizing multiple facets to unravel their performance nuances. Initially, exploring diverse word
embeddings and feature extraction methods across these models yielded noteworthy observations.
Subsequently, the evaluation of NMF, LDA, GSDMM, and BERT-LDA-K-means models across dis-
tinct coherence scores contributed significant insights into their coherence and capacity for generating
topics. Moreover, a comparative analysis based on varying topic counts delved into the scalability
and interpretability of these models. Leveraging Cohen’s Kappa scores enabled an understanding of
optimal topic numbers, emphasizing inter-rater agreement. Additionally, an investigation into running
costs shed light on the comparable performance among text clustering models.

The exploration of various word embeddings and feature extraction methods across different
models provided insightful observations:
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• NMF-Bi-BOW and NMF-Tri-BOW: Show a consistent increase in coherences up to a certain
number of topics, implying their ability to capture meaningful relations in bigram and trigram
word embeddings using Bag-of-Words representation. However, the coherence tends to stabilize
or decrease slightly as the number of topics increases.

• NMF-Bi-TFIDF and NMF-Tri-TFIDF: Display varied performance. Bi-TFIDF shows rela-
tively higher and more consistent coherences compared to Tri-TFIDF across different topic
counts, indicating that TF-IDF might assist in capturing more distinctive features in bigram
over trigram.

• LDA-Bi-BOW and LDA-Tri-BOW: Demonstrate an increasing trend in coherence scores with
an increase in the number of topics, particularly with trigram embeddings, suggesting a more
coherent representation of topics.

• LDA-Bi-TFIDF and LDA-Tri-TFIDF: Both display a mixed performance, showing fluctua-
tions in coherences across different topic counts. However, TF-IDF based bigrams seem to offer
better stability and slightly higher coherence scores.

• GSDMM-Bi-BOW and GSDMM-Tri-BOW: Exhibit moderate performance, with fluctuations
in coherence scores across different numbers of topics. Both bigram and trigram representations
via BOW show similar coherence trends.

Figure 3: Comparison of topic coherence scores for topic clustering models
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In summary, BOW consistently outperforms TF-IDF, particularly with trigram representations,
showcasing enhanced stability and higher coherence scores. While trigram generally offer richer
context, their effectiveness varies across models, with bigram displaying more consistent coherence
scores in certain scenarios.

The assessment of NMF, LDA, GSDMM, and BERT-LDA_KMeans across four coherence
scores (C_v, C_umass, C_uci, and C_npmi) offers valuable insights into these models’ performance
regarding topic coherence.

NMF, utilizing NMF, demonstrated moderate C_v coherence, suggesting reasonable word co-
occurrence within topics. Its relatively high C_umass score indicated good topical coherence based
on document co-occurrence. The model also performed well in C_uci, highlighting its ability to create
coherent topics in terms of document co-occurrence and exclusivity. However, the comparatively lower
C_npmi score hinted at a discrepancy in evaluating exclusivity using normalized pointwise mutual
information.

LDA, employing LDA, displayed robust performance across C_v coherence and C_umass score,
indicating strong word co-occurrence within topics and coherence based on document co-occurrence,
respectively. Similar to NMF, it excelled in C_uci, signifying its capacity to generate exclusive and
coherent topics. Yet, akin to NMF, LDA showcased a slightly lower C_npmi score, indicating potential
disparities in assessing exclusivity through normalized pointwise mutual information.

GSDMM, employing GSDMM, exhibited a moderate C_v coherence and a relatively high
C_umass score, suggesting reasonable word co-occurrence within topics and good topical coherence
based on document co-occurrence, respectively. The model also demonstrated reasonable performance
in C_uci, indicating its ability to create coherent and exclusive topics. However, like NMF and LDA,
its C_npmi score was relatively lower, hinting at a potential challenge in evaluating exclusivity.

BERT-LDA-K-means displayed robust C_v coherence and C_umass scores, suggesting strong
word co-occurrence within topics and coherence based on document co-occurrence. It performed
well in C_uci, emphasizing its capacity to create exclusive and coherent topics. Nevertheless, akin to
other models, it showed a slightly lower C_npmi score, potentially indicating challenges in assessing
exclusivity through normalized pointwise mutual information.

In summary, while all models showcased strengths across different coherence scores, discrepancies
in assessing exclusivity through C_npmi were apparent, suggesting a limitation in evaluating topic
coherence solely through normalized pointwise mutual information. Notably, NMF and GSDMM
exhibited more variability across coherence scores compared to LDA and BERT-LDA_KMeans.
LDA and BERT-LDA-K-means demonstrated consistent strong performance across C_v, C_umass,
and C_uci, highlighting their effectiveness in generating coherent topics across various coherence
metrics. This comprehensive analysis underscores the importance of a balanced evaluation approach
considering multiple coherence metrics to thoroughly assess topic quality.

A comparison among NMF, LDA, GSDMM, and BERT-LDA-K-means based on the number
of topics sheds light on their scalability and interpretability in generating topics.

NMF, utilizing NMF, demonstrated consistent yet diminishing performance as the number of
topics increased. While it exhibited reasonable coherence and interpretability with fewer topics,
maintaining quality became a challenge with the expansion of topics.

In contrast, LDA displayed robust scalability, maintaining high coherence and exclusivity across
various topic numbers. Its ability to retain quality topics even with higher topic counts underscored
its stability in generating meaningful and interpretable topics.
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GSDMM, employing GSDMM, showcased moderate scalability. While maintaining reasonable
coherence with fewer topics, it struggled to sustain quality and coherence as the number of topics
increased, resembling the challenges observed in NMF.

BERT-LDA-K-means emerged as a model with remarkable scalability, maintaining high coher-
ence and exclusivity across various topic counts. Similar to LDA, it consistently generated interpretable
topics across a wide range of topic numbers, making it a robust choice in terms of scalability and
interpretability.

Both LDA and BERT-LDA-K-means outperformed NMF and GSDMM in scalability and
maintaining coherence across a broader range of topic numbers. NMF and GSDMM faced challenges
in maintaining coherence and interpretability as the number of topics increased, indicating limitations
in scalability for these models. The ability of BERT-LDA-K-means to sustain high-quality topics
across various topic counts stands out, emphasizing the significance of considering scalability and
interpretability when selecting a topic modeling approach.

The subsequent step involved selecting a model and determining the optimal number of topics
for human interpretability. Model selection was based on identifying the number of topics that
performed well across all four metrics, within a range of 5–20 topics to avoid overfitting and ensure
comprehensibility. Each model, along with its respective high-coherence topic counts and top 20
relevant terms, underwent human rating for selection. Cohen’s Kappa scores were then used to finalize
the choice of models with the most optimal topic numbers. Table 2 displays these chosen models with
their respective topic counts.

Table 2: Cohen’s Kappa for judge’s agreement on text clustering models and respective topics

Model Topics generated Kappa

LDA-Tri-BOW 15 0.82
LDA-Bi-BOW 12 0.79
BERT-LDA-K-means 12 0.72
LDA-Tri-BOW 10 0.70
BERT-LDA-K-means 9 0.65
LDA-Tri-BOW 6 0.63
BERT-LDA-K-means 11 0.60

Table 2 displays the evaluation of Cohen’s Kappa scores, shedding light on determining the
optimal number of topics for text clustering. Observing the Kappa scores across various models and
their respective topic numbers reveals valuable insights. For instance, higher Kappa scores, such as 0.82
for LDA-Tri-BOW with 15 topics and 0.79 for LDA-Bi-BOW with 12 topics, signify robust inter-rater
agreement. This emphasizes the significance of selecting topic numbers that foster consensus among
raters, ensuring more coherent clusters.

However, contrasting scores across different topic numbers within the same model (e.g., LDA-Tri-
BOW at 15 topics vs. 10 topics) indicate a nuanced relationship. While increased topic numbers might
enhance agreement initially, a higher number of topics may lead to decreased consensus among raters,
as seen with lower Kappa scores for smaller topic counts.

The variability in Kappa scores for models such as BERT-LDA-K-means further highlights the
sensitivity of models to the number of topics generated. This underscores the importance of meticulous
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topic number selection, aiming to strike a balance between coherence, interpretability, and inter-rater
reliability.

Based on the highest rating score obtained, the LDA-Tri-BOW model with 15 topics was selected
as a suitable model for the experiment. The model was used to assign the best label to the given topics.
The method takes one parameter, ‘threshold,’ which is the minimum probability required for a label to
be considered the best label for a given tweet. If the probability of the top-scoring topic is greater than
or equal to the threshold, it is returned as the best label for the tweet. Otherwise, the tweet is labeled as
“other”. After labeling, the entire dataset can be distributed according to the amount for each topic,
as shown in Fig. 4.

Figure 4: Displays the distribution of COVID-19-related tweets in Thailand and its neighboring regions
on November 01, 2021, and July 07, 2022

Finally, the training time for models was a crucial consideration in conducting the experiment.
Table 3 illustrates the time consumption of the clustering models utilized in this study.

Table 3 presents the evaluation of average iteration training times across diverse topic modeling
algorithms, unveiling valuable insights:

• Bigram vs. Trigram: Average execution times per iteration consistently indicated similar compu-
tational costs for both bigram and trigram representations within NMF, LDA, and GSDMM
models. Minimal variance across these models underscored their comparable computational
demands.

• Bag-of-Words (BOW) vs. TF-IDF: TF-IDF representation showed marginally higher average
execution times per iteration across NMF, LDA, and GSDMM variations, implying a slightly
heavier computational load compared to BOW in these topic modeling algorithms.

• Model Performance Insights: Traditional models like NMF, LDA, and GSDMM demonstrated
moderate to high computational efficiency, with NMF displaying lower execution times per
iteration than LDA and GSDMM across various representations. However, the BERT-LDA-
K-means model exhibited substantially higher computational costs, highlighting its resource-
intensive nature compared to traditional models.

In summary, this analysis emphasizes comparable performance between bigram and trigram rep-
resentations, slight computational disparities between BOW and TF-IDF, and varying computational
demands among NMF, LDA, GSDMM, and the resource-intensive BERT-LDA-K-means model.
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Table 3: Average iteration execution times (in seconds) for topic clustering models

Model Model variation Average execution time per
iteration

NMF-based models [7–10] NMF-Bi-BOW 70.32 s/it
NMF-Tri-BOW 71.11 s/it
NMF-Bi-TFIDF 96.53 s/it
NMF-Tri-TFIDF 98.04 s/it

LDA-based models [7–10] LDA-Bi-BOW 187.32 s/it
LDA-Tri-BOW 244.75 s/it
LDA-Bi-TFIDF 290.05 s/it
LDA-Tri-TFIDF 310.15 s/it

GSDMM-based models [11] GSDMM-Bi-BOW 998.36 s/it
GSDMM-Tri-BOW 1102.08 s/it

BERT-LDA-based models [12–14] BERT-LDA-K-means 7381.82 s/it

The proposed clustering models face several challenges, including predefining the number of
clusters and ensuring uniform cluster sizes. Hierarchical clustering has emerged as a viable solution,
eliminating the need for predetermined cluster numbers. In future research, the aim will be to address
the difficulty in distinguishing certain topics using hierarchical clustering. This approach involves
leveraging topic modeling to identify key topics within the corpus and clustering tweet texts based
on the similarity of their topic distributions. One method entails representing each document as a
topic distribution and utilizing these representations as inputs for clustering algorithms.

3.2 Text Classification

The process of text classification starts with training traditional models by tuning their hyper-
parameters to obtain the best parameters for each model, as shown in Table 4. Subsequently, these
models are trained on the dataset, and their performance is evaluated. The experimental results are
illustrated in Fig. 5.

As shown in Fig. 5, the LSVC model outperforms the other models significantly, while the
remaining three models exhibit similar performances. The subsequent step involved conducting experi-
ments with LSTM, BiLSTM, CNN-LSTM, and BERT. The process commenced with hyperparameter
tuning, as detailed in Table 1, which led to the identification of optimal hyperparameters for each
DNN model, as presented in Table 5. The training process involved a gradual increase in the number of
epochs while utilizing EarlyStopping [15], which monitors the validation loss during training and halts
the process when no further improvements are observed, thus mitigating overfitting. It is worth noting
that the validation loss rate stabilized after just five training epochs. The results of the experiments are
shown in Figs. 6–8.

The learning curve for training and validation is shown in Fig. 6. As the model iteratively improved
its fit to the training data, the training loss gradually decreased. A corresponding reduction in the
validation loss was observed alongside the training loss. The training process continued until the
validation loss reached a point of stabilization, as shown in Fig. 6a. At this juncture, the EarlyStopping
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mechanism was employed to halt training prematurely and prevent overfitting. Throughout the
training of all four models, performance evaluation was carried out by assessing accuracy and weighted
F1-Score. Fig. 7 shows that BiLSTM achieves the highest classification performance when trained for
five epochs.

Figure 5: Comparison of precision, recall, weighted F1-Score and accuracy for MNB, LSVC, LSVM,
and LR models

Table 4: Four text classification models and their optimal hyperparameters

Model Hyperameters

MNB Alpha: 0.5, fit_prior: False, use_idf : False, ngram_range : (1, 1)
LSVC fit_intercept: False, loss: ‘hinge’, max_iter: 900, multi_class:

‘crammer_singer’, random_state: 42, use_idf: True, ngram_range : (1, 1)
LSVM Alpha: 0.0001, early_stopping: True, loss: ‘hinge’, max_iter: 1000,

penalty: ‘l2’, random_state: 42, use_idf: True, ngram_range: (1, 1)
LR Alpha: 0.0001, early_stopping: True, loss: ‘log’, max_iter: 1000, penalty:

‘l1’, random_state: 42, use_idf: False, ngram_range: (1, 1)

Table 5: DNN algorithms and their corresponding optimal hyperparameters

Model Hyperameters

LSTM lr: 2e-3, batch_size: 64, epoch: 5
BiLSTM lr: 2e-3, batch_size: 64, dropout: .25, epoch: 5
CNN-
BiLSTM

filters: 32, kernel_size: 3, lr: 2e-3, batch_size: 64, dropout:
.25, epoch:5

BERT lr: 1e-5, eps:1e-8, max_length: 64, batch_size: 32, epoch: 5
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Figure 6: Comparison of training loss and validation loss for LSTM, BiLSTM, CNN-BiLSTM, and
BERT models

Figure 7: Comparison of accuracy & weighted F1-Score for LSTM, BiLSTM, CNN-BiLSTM, and
BERT models

After conducting experiments with all the models presented, the accuracy and weighted F1-Score
were compared to identify the best-performing model, as shown in Fig. 8.

We meticulously examined different models and configurations, comparing both traditional and
deep learning methods. Our analysis indicated that the performance of these models depended on
various factors, including the dataset’s nature, feature extraction techniques, and hyperparameter
settings. For traditional models, we found that the choice of feature extraction methods and the
incorporation of IDF (Inverse Document Frequency) played a crucial role. Some models, like MNB
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and LR, performed well without IDF, while others, such as LSVC and LSVM, showed improved
performance with IDF. LSVC consistently outperformed other traditional models, demonstrating its
reliability in our context.

Figure 8: Comparison of accuracy & weighted F1-Score for MNB, LSVC, LSVM, LR, LSTM,
BiLSTM, CNN-BiLSTM, and BERT models

In the case of DNN models, we experimented with different architectures, learning rates, ker-
nel sizes, batch sizes, and epochs. Surprisingly, while DNN models, in general, exhibited better
performance, LSVC showed inconsistent results. Notably, BiLSTM outperformed our expectations
among the DNN models, highlighting its effectiveness in capturing complex patterns within the data.
However, the performance variations observed across models can be attributed to the intricacies of
the dataset, model architectures, and hyperparameter settings. Our intention is to conduct further
experiments with diverse architectures like RoBERTa or XLNet, and explore ensemble methods
to enhance the model’s overall performance. These ongoing investigations will provide a more
comprehensive understanding of the observed results and ensure the robustness of our conclusions.

This study provides valuable insights into public health and its related industries. By employing
advanced Natural Language Processing (NLP) techniques, the proposed models effectively analyzed
COVID-19-related discussions on social media platforms such as Twitter. These models offer real-
time monitoring capabilities, enabling swift identification of emerging trends and potential outbreaks.
Industries, especially healthcare and crisis management, can utilize models for proactive decision-
making and timely interventions. Moreover, this research contributes to enhancing the efficiency of
public health surveillance by harnessing social media data and ensuring a rapid response to evolving
health situations. The adaptable nature of our models makes them applicable not only to COVID-19,
but also to future disease outbreaks, empowering industries to stay ahead in managing health crises.
This research bridges the gap between technology and public health, facilitating informed actions and
enhancing overall societal well-being.

4 Conclusion

This study demonstrates the effectiveness of machine learning and deep learning models in topic
extraction and classification from a corpus of COVID-19 discourse on Twitter. The experiment used a
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dataset collected during the Omicron outbreak and addressed two primary objectives: topic extraction
and text classification, with the aim of identifying the most suitable model for the dataset.

In the first part of the experiment, we compared the performance of various models, including
LDA, NMF, GSDMM, and BERT-LDA-K-means, for topic extraction from the dataset. The second
part involved comparing the performance of the DNN models and traditional ML models for text
classification, using the labeled dataset obtained from the previous topic extraction experiment. The
results of the experiment highlight the effectiveness of the LDA and BERT-LDA-K-means algorithm
in constructing a topic-modeling model for extracting COVID-19-related topics from the Twitter data.
Particularly in this specific task, by utilizing LDA with trigram and BOW features, the model achieved
satisfactory performance that aligned well with human understanding and interpretation.

In terms of text classification, the LSVC and BiLSTM models demonstrated superior perfor-
mance, closely matching other DNN models. These findings suggest that the proposed models can
be applied as preventive tools for monitoring and tracking the COVID-19 pandemic through social
media platforms. While the overall assessment indicates superior performance of models within the
DNN group compared to traditional models, it remains speculation whether these models would
exhibit equally fitting performance when applied to specific tasks. This observation prompts further
investigation to ascertain their suitability and effectiveness in specialized domains. It serves as a
directional guideline for future research endeavors in this field.
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