iconOpen Access

ARTICLE

crossmark

An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video

Sareer Ul Amin1, Yongjun Kim2, Irfan Sami3, Sangoh Park1,*, Sanghyun Seo4,*

1 Department of Computer Science and Engineering, Chung-Ang University, Seoul, 06974, Korea
2 Intelligent Convergence Research Lab., ETRI, DaeJeon, 34129, Korea
3 Department of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
4 College of Art and Technology, Chung-Ang University, Anseong, 17546, Korea

* Corresponding Authors: Sangoh Park. Email: email; Sanghyun Seo. Email: email

Computer Systems Science and Engineering 2023, 46(3), 3939-3958. https://doi.org/10.32604/csse.2023.034805

Abstract

In the present technological world, surveillance cameras generate an immense amount of video data from various sources, making its scrutiny tough for computer vision specialists. It is difficult to search for anomalous events manually in these massive video records since they happen infrequently and with a low probability in real-world monitoring systems. Therefore, intelligent surveillance is a requirement of the modern day, as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies. In this article, we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance video (ADSV). At the input of the ADSV, a shots boundary detection technique is used to segment prominent frames. Next, The Light-weight Convolution Neural Network (LWCNN) model receives the segmented frames to extract spatial and temporal information from the intermediate layer. Following that, spatial and temporal features are learned using Long Short-Term Memory (LSTM) cells and Attention Network from a series of frames for each anomalous activity in a sample. To detect motion and action, the LWCNN received chronologically sorted frames. Finally, the anomaly activity in the video is identified using the proposed trained ADSV model. Extensive experiments are conducted on complex and challenging benchmark datasets. In addition, the experimental results have been compared to state-of-the-art methodologies, and a significant improvement is attained, demonstrating the efficiency of our ADSV method.

Keywords


1  Introduction

Recently, the surge in the overall crime rate has become one of the leading causes of losing money and lives [1]. Advanced surveillance is the most effective method for promptly detecting such unusual events. A significant amount of attention is paid to anomaly event recognition in video surveillance due to its wide range of applications in a variety of fields, such as crime prevention, traffic safety, and intelligent video surveillance monitoring [2]. Globally, vast amounts of surveillance cameras have been installed in a variety of locations for public safety in recent years [3]. Due to the limits of manual monitoring, law enforcement agencies are unable to identify or prevent abnormal behavior. Unusual behavior must be identified using a computer vision-based system capable of classifying usual and unusual behavior without any individual involvement. Such an intelligent method is preferable for monitoring and reduces the amount of labor needed for 24-h manual observation. The literature [46] provides several approaches for defining anomalous activity as “the existence of variation in normal patterns.” For instance, anomaly detection is addressed as a classification issue [7,8], whereby visual features are fed into the algorithm, which then learns the difference between usual and unusual events. In other contexts, such as the detection of violence and road traffic accidents [9], it is recognized as a binary classification issue. However, these solutions are restricted to two kinds of behaviors: violent behavior, and normal behavior, offering only a percentage of the solution for implementation in real-world scenarios. Until now, sparse coding-based anomaly detection methods have demonstrated promising results [1012], and these methods are assumed to be the standard for anomaly classification. These techniques are trained so that the start segments of video clips (i.e., prior to an uncommon event) are utilized to develop a vocabulary of usual events. Despite that, this strategy is insufficient for correctly detecting aberrant activities from a dictionary of regular events. Anomaly detection strategies based on weakly-supervised Multiple-Instance Learning (MIL) are also investigated in [13]. During the training phase of this technique, the videos are separated into a predefined number of clips. These clips generate bag instances containing samples of usual and unusual events, and they can learn instance-level labels for the bags they create. Since surveillance system changes over time, sparse-coding schemes have particular problems. For example, transferring the dictionary learned from usual and unusual events, results in a high proportion of false alarms. In addition, distinguishing irregular activities in surveillance cameras is exceedingly challenging due to their low quality, high intra-class flexibility, and absence of labeled data, as anomalous activities are infrequently connected with normal appearance. Machines must rely on visual characteristics, whereas people can distinguish both typical and atypical events using their rational thinking. In general, visually robust features exceed visually weak features for event detection and recognition [14]. Existing approaches are predominantly plagued by a high rate of false alarms, resulting in poor performance. In addition, while these methods perform well with tiny datasets, their effectiveness is limited whenever applied to actual scenarios. In this research, we solve these issues by proposing a unique and optimal Light-weight technique to predict abnormalities in surveillance footage. The proposed ADSV method employs a windowing method and analyses a sequence of frames in chronological order to track motion as well as action in surveillance footage. The proposed ADSV method learns the visual unique characteristics from a series of frames per training sample by using the video’s spatial and temporal characteristics. The prominent contribution of our research work may be summarized as follows:

•   An effective and efficient shot segmentation-based pre-processing strategy is proposed, wherein shots are segmented from surveillance video having anomaly activity using a shot boundary detection algorithm.

•   An efficient, novel and LWCNN with TimeDistributed 2D layers is proposed to extract and learn Spatial-temporal patterns from a series of frames per training sample.

•   The ADSV method proposes a hybrid CNN and LSTM training mode that can efficiently process sequential data and assure training speed. In addition, the unnecessary features of data will degrade the model’s performance; hence, the attention network is employed to reallocate feature weights to maintain the model’s performance and enhance its generalization capability.

•   The complex and challenging benchmark datasets UCF-Crime and CUHK-Avenue are utilized to evaluate our proposed ADSV methodology. In contrast to current anomaly detection approaches, we achieve state-of-the-art results employing our proposed ADSV system, which is accurate while requiring fewer model parameters and a smaller overall size of the model (54.1 MBs).

The remaining sections of the paper are structured as follows. Section 2 explains the review of existing techniques. The proposed methodology is explained in Section 3. The dataset’s information, the quantitative assessment, and the explanation are provided in Section 4. The concluding thoughts and future work are presented in Section 5.

2  Related Work

The detection and recognition of anomalies in the surveillance environment have been widely researched in the past. Conventional feature-based approaches and deep feature-based approaches for abnormal event detection are the two primary categories mentioned in the literature on anomaly detection methods. In the following, prominent techniques in both categories are briefly discussed.

2.1 Conventional Feature-Based Approaches

Traditionally, anomaly identification mostly relied on manual, low-level feature-based approaches. These systems are grouped into three tiers: (1) Retrieval of features, which extracts low-level features from the training dataset; (2) pattern learning, which is differentiated by the dispensation of regular occurrences; and (3) anomaly identification, which identifies dissimilar patterns or deviations as abnormal occurrences. Zhang et al. [15] used the Markov-random field to depict frequent events by employing spatial and temporal information. In a similar way, Mehran et al. [16] proposed a social-interacting method whereby optical flow was used to recognize regular and aberrant actions and estimate cooperative forces. In addition, Nor et al. [17] presented a paradigm for interpretable anomaly detection that aids prognostic and health management PHM. Their methodology relies on a Bayesian learning algorithm with predetermined prior and probabilities [18]. It offers additional descriptions to produce explanations locally and globally for PHM tasks. A similar Attention-based LSTM is developed by Ullah et al. [19] for activity recognition in sports. They refined the spatial characteristics using convolution block attention. The refined extracted features are classified into various sports activities using a densely connected convolutional network with an activation function of SoftMax. Selicato et al. [20] tried to detect abnormalities in gene data. For instance, they develop a method based on ensemble for identifying regular and aberrant expression of gene patterns by employing traditional cluster algorithms as well as principal component analysis (PCA). Riaz et al. [21] suggested deep ensemble-based methods for anomaly detection in complicated scenarios. Furthermore, to identify human being joints, a position-based estimation technique is integrated. The identified joints are considered as features and sent to a neural network for the identification of anomalies. Lately, Zhao et al. [22] came up with the unsupervised method that combined a time-varying-based sparsely coding style, online querying inputs, as well as sparsely reconstruction capability derived using a trained lexicon of all activities to identify irregularities in videos. However, having the ability to recognize abnormalities promptly has remained a difficulty, which has piqued the attention of experts in the field.

2.2 Deep Feature-Based Approaches

In the present era, deep feature-based approaches have achieved remarkable popularity in a range of unstructured multi-dimension data domains, such as activity recognition and video analysis, in comparison to conventional techniques. Luo et al. [23] designed a technique wherein video frames are encoded with a convolutional network and unusual activities are recognized with Conv-LSTM. Furthermore, the encoder captures video deviation to identify anomalies in monitoring systems. Luo et al. [23] developed a Conv-LSTM network with an auto-encoder for the detection of anomalies. In addition, they extended their approach by recognizing abnormalities with Recurrent Neural Network (RNN) and auto-encoder. Liu et al. [24] introduced a method for recognizing anomalies in the video by using the spatiotemporal detector. In this model, the discriminating prominence information and a group of temporal texture information were considered as usual data activities. Chang et al. [25] introduced a cluster-based auto-encoder to efficaciously capture valuable patterns from regular activities. Two phases have been utilized to understand spatiotemporal information consistency, the spatial-auto-encoder in the first phase is responsible for the final individual frame. However, the second phase’s temporal-auto-encoder executes and generates the RGB difference among frames. Furthermore, abnormalities in videos are identified using generative models. Sabokrou et al. [26] developed Generative Adversarial Network (GANs) for identifying video anomalies. This network guides the normally distributed data employing GANs strategies. Recent video annotation techniques employ 3D Convolution (C3D) and MIL to detect abnormal occurrences [27]. For instance, Sultani et al. [12] introduced a system for identifying abnormal occurrences using weak video annotations as well as the MIL technique. This system was implemented on regular as well as irregular video data by generating two different bags of usual and unusual activities and further used the MIL approach to predict the probability scores of abnormal video activity. Landi et al. [28] suggested a method for tube extraction, which utilizes location information to construct a regression system for anomalies. Before passing the data to the regression model [29], the pooling layer integrates the spatial and temporal information of model inception and optic flow respectively. Zhong et al. [6] proposed an unsupervised method for identifying abnormalities and a supervised system for classifying actions having noise annotations. Due to the unpredictability of anomalous occurrences, the abnormal video annotations remained unclear. In addition, a graph convolution network was developed to remove the noise from these annotations, as well as an activity classifier was used to classify the activities. In comparison to the current strategies, this article Presented an efficient Attention-based deep-learning approach for anomaly detection in surveillance video. Section 3 discusses the prime components of the suggested ADSV method.

3  Proposed Methodology

This section elaborates on the proposed (ADSV) method and its fundamental component structure. Fig. 1 depicts a visual representation of our ADSV strategy. In brief, the technique of anomaly detection in surveillance video consists of three main components: Shot segmentation, feature extraction, sequence learning, and abnormality classifications. To begin with, a shots boundary detection technique is used to segment prominent frames. Furthermore, The LWCNN model receives the segmented frames in order to extract spatial and temporal information from the intermediate layer. Following that, spatial and temporal features are learned using LSTM cells and Attention Network from a series of frames for each sample of abnormal activity. To detect motion and action, the LWCNN received chronologically sorted frames. Finally, the abnormal activities in video shots are identified using the proposed trained ADSV model.

images

Figure 1: The proposed ADSV framework for video anomaly detection consists of three main components: shot segmentation, feature extraction, sequence learning, and abnormality classifications. At the input of the ADSV, a shots boundary detection technique is used to segment prominent frames. Next, The LWCNN model receives the segmented frames to extract spatial and temporal information from the intermediate layer. Following that, spatial and temporal features are learned using LSTM cells and Attention Network from a series of frames for each anomalous activity in a sample. To detect motion and action, the LWCNN received chronologically sorted frames. Finally, the anomaly activity in the video is identified using the proposed trained ADSV model

3.1 Segmentation of Shots by Using Boundary Detection Algorithm

Shots Boundary Detection is a prerequisite for most video applications that include the comprehension, indexing, characterization, or classification of video and temporal segmentation, making it a prominent research issue in content-based video analysis. Table 1 represents the parameter descriptions of shots segmentation by using a boundary detection algorithm. The concept of the boundary detection algorithm is implemented in the following key phases:

•   Image Segmentation: Divide each frame from the video into 𝓂-rows and 𝓃-columns blocks at the image segmentation level. Then, the difference between two successive frames of the relevant blocks is calculated. Lastly, the gap between consecutive frames is calculated by adding the differences created by the various weights.

•   Attention-Model: Attention, a neurobiological word, refers to the ability or capability to concentrate mental energies on an object through careful observation or attentive listening. The attention model suggests that, from a visual perspective, different contents are prioritized based on their relative significance; it also represents the relative importance of frames. On this basis, it is possible to conclude that pixel in different positions contributes differently to the detection of shot boundaries; pixels on the edge contribute more than pixels in other positions. As a result, distinct weights are assigned to blocks at various positions. The spatial distribution of pixels with varying grey values and the relative significance of pixels with varying positions are evaluated.

•   Histogram Matching: There are several types of histogram matching. In most literature, the matching difference is calculated using a color histogram. However, after evaluating different types of histogram matching techniques, it was shown that the 𝓍2 histogram surpassed the others in recognizing shot boundaries [30]. As a result, the 𝓍2 histogram matching technique is used.

•   Shot-Boundary Detection: Histogram differences are used to detect shot boundary and consequently extracted the key frame based on underlying activity. The threshold τ=𝒟+α×𝒮𝒯𝒟 has a constant value of α which applies weight to the 𝒮𝒯𝒟 for the overall τ. If 𝒟(ft,ft+1)τ, frame ft indicates the Prior shot’s end, while the frame ft+1 indicates the subsequent shot’s end. Typically, the minimum feasible shot duration should be between one and two and a half seconds long. In addition, a frame rate of at least 25–30 fps is required to ensure smoothness, or a flashlight might be visible. Thus, a shot should consist of 30–45 frames. Therefore, a shot combining rule is provided [30]: If a captured shot contains less than 38 frames, it should be combined with the following shot or declared independent. In Table 3, the pseudo-code implementation of shot boundary detection is presented.

images

3.2 Proposed LWCNN Method

CNNs were motivated by biological processes similar to the structure of the visual cortex in animals. The connection of the neurons in the convolution layers (CL) is arranged in a similar way to that of the visual system in an animal. Each neuron in the cortex responds to stimuli within a small portion of the input frame, known as the reception field. CL can maintain spatial relationships among input frames in video analysis by learning feature representations by applying filters whose values are learned throughout the training process [31]. The Proposed LWCNN method is comprised of three TimeDistributed 2D CL and two TimeDistributed 2D max pooling layers, with the number of channels, kernel, padding, and strides stated in Table 2. Furthermore, a kernel size of 3 × 3, a stride of 2 × 2, and an activation function of the Rectified Linear Unit (ReLU) are applied to each TimeDistributed 2D CL. Besides that, TimeDistributed 2D max pooling with a stride size of 2 × 2 is used to minimize the network’s size following the second and third CL. Each convolutional process utilizes same-padding techniques to avoid losing information at the border of the input frame. In the first CL, we start with 64 feature maps, which are then followed by the identical feature maps in the second CL, and 128 activation maps are generated in the final CL.

images

images

As input, the suggested framework takes a sequence of the segmented frames that have been preprocessed. In addition, the proposed LWCNN is used to capture the spatial information of each frame, which is subsequently fed into the LSTM to extract temporal information. As shown in Fig. 1, we employed a frame-wise LWCNN to retrieve the spatial information of each frame. Furthermore, the input frames (


Cite This Article

S. U. Amin, Y. Kim, I. Sami, S. Park and S. Seo, "An efficient attention-based strategy for anomaly detection in surveillance video," Computer Systems Science and Engineering, vol. 46, no.3, pp. 3939–3958, 2023. https://doi.org/10.32604/csse.2023.034805


cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1692

    View

  • 518

    Download

  • 0

    Like

Share Link