Vol.117, No.6, 2020, pp.439-452, doi:10.32604/EE.2020.011805
OPEN ACCESS
ARTICLE
A Subsynchronous Oscillation Suppression Method Based on Self-Adaptive Auto Disturbance Rejection Proportional Integral Control of Voltage Source Converter Based Multi-Terminal Direct Current System with Doubly-Fed Induction Generator-Based Wind Farm Access
  • Miaohong Su1, Haiying Dong1,2,*, Kaiqi Liu1, Weiwei Zou1
1 School of Automatic and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
2 School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
* Corresponding Author: Haiying Dong. Email: hydong@mail.lzjtu.cn
Received 30 May 2020; Accepted 28 July 2020; Issue published 16 October 2020
Abstract
A subsynchronous oscillation suppression strategy based on self-adaptive auto disturbance rejection proportional integral controller is proposed for doublyfed induction generator-based wind farm integrated into grid through voltage source converter based multi-terminal direct current. In this strategy, the nonlinear PI controller is constructed by fal function to replace the traditional linear PI controller, and then the tracking differentiator is used to arrange the appropriate transition process in combination with the idea of active disturbance rejection control, and the self-adaptive auto disturbance rejection proportional integral controller is designed. By applying the controller to the inner loop of the converter on the rotor side of the doubly-fed induction generator, the adaptability of the control parameters of the inner loop to the change of operating conditions of the system can be improved, and the dynamic performance of the system can be improved. The simulation results on PSCAD/EMTDC show that, compared with SSDC, when the wind speed is 7.5 m/s, 8.5 m/s and 9.5 m/s, the convergence time can be shortened by 0.2 s, 0.1 s and 0.25 s, respectively. When the number of grid-connected doubly-fed induction generator wind turbines is 200 and 220, the convergence time is shortened by 0.1s. When the self-adaptive auto disturbance rejection proportional integral controller and the multi-channel variable-parameter additional subsynchronous damping controller work together, the convergence time under the above three wind speeds are 2.7 s, 2.7 s and 2.3 s, respectively. When the number of grid-connected doubly-fed induction generator wind turbines is 200 and 220, the convergence time is 2.65 s and 2.75 s, respectively. It can be concluded that the self-adaptive auto disturbance rejection proportional integral controller can realize the effective suppression of the subsynchronous oscillation under different operating conditions of the wind farm via the comparison with the additional subsynchronous damping control of doubly-fed induction generator. Besides, subsynchronous oscillation will converge faster and the stability of the system can be enhanced when the self-adaptive auto disturbance rejection proportional integral controller and the multi-channel variable-parameter additional subsynchronous damping controller work together.
Keywords
Doubly-fed induction generator; voltage source converter based multiterminal direct current; subsynchronous oscillation; self-adaptive auto disturbance rejection proportional integral controller
Cite This Article
Su, M., Dong, H., Liu, K., Zou, W. (2020). A Subsynchronous Oscillation Suppression Method Based on Self-Adaptive Auto Disturbance Rejection Proportional Integral Control of Voltage Source Converter Based Multi-Terminal Direct Current System with Doubly-Fed Induction Generator-Based Wind Farm Access. Energy Engineering, 117(6), 439–452.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.