Open Access iconOpen Access

ARTICLE

crossmark

Development of a High-Temperature Thixotropic Cement Slurry System

Ping Lv1, Jiufei Liu2, Mengran Xu3,*, Hui Tian3,4, Huajie Liu3, Yuhuan Bu3, Zhuang Cai3, Junfeng Qu5

1 Institute of Petroleum Engineering Technology, Sinopec Northwest Oil Field Company, Urumqi, 830000, China
2 Xinjiang Branch of CNPC Chuanqing Drilling Engineering Company Limited, Korla, 841000, China
3 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
4 Sinopec Shengli Petroleum Engineering Co., Ltd., Dongying, China
5 Henan Science and Technology Innovation Promotion Center, Zhenzhou, 450003, China

* Corresponding Author: Mengran Xu. Email: email

Fluid Dynamics & Materials Processing 2023, 19(11), 2907-2921. https://doi.org/10.32604/fdmp.2023.029304

Abstract

Cementing carbonate reservoirs is generally a difficult task. The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help to fix some notable problems. More precisely, it can easily fill the leakage layer; moreover, its gelling strength can grow rapidly when pumping stops, thereby increasing the resistance to gas channeling, effectively preventing this undesired phenomenon in many cases. High-temperature thixotropic cement slurry systems, however, are still in an early stage of development and additional research is needed to make them a viable option. In the present study, using a self-developed composite high-temperature thixotropic additive as a basis, it is shown that the compressive strength can be adjusted by tuning the proportion of silica sand, the high-temperature retarder, fluid loss additive and dispersant (compatible with the thixotropic additive). According to the tests, the developed high-temperature thixotropic cement slurry system has a 14 d compressive strength of 29.73 MPa at 150°C, and a thickening time of 330 min when the dosage of retarder is 2%. At the same time, the rheological property, water loss, permeability, water separation rate, and settlement stability of the cement slurry system meet the requirements of cementing construction.

Keywords

High temperature resistance; thixotropy; cement slurry system

Cite This Article

APA Style
Lv, P., Liu, J., Xu, M., Tian, H., Liu, H. et al. (2023). Development of a High-Temperature Thixotropic Cement Slurry System. Fluid Dynamics & Materials Processing, 19(11), 2907–2921. https://doi.org/10.32604/fdmp.2023.029304
Vancouver Style
Lv P, Liu J, Xu M, Tian H, Liu H, Bu Y, et al. Development of a High-Temperature Thixotropic Cement Slurry System. Fluid Dyn Mater Proc. 2023;19(11):2907–2921. https://doi.org/10.32604/fdmp.2023.029304
IEEE Style
P. Lv et al., “Development of a High-Temperature Thixotropic Cement Slurry System,” Fluid Dyn. Mater. Proc., vol. 19, no. 11, pp. 2907–2921, 2023. https://doi.org/10.32604/fdmp.2023.029304



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1227

    View

  • 732

    Download

  • 0

    Like

Share Link