• Journal Logo

Open Access iconOpen Access

ARTICLE

crossmark

Effect of a Double Helical Spring Decompression Structure Backpack on the Lumbar Spine Biomechanics of School-Age Children: A Finite Element Study

Fengping Li1, Dong Sun1,*, Qiaolin Zhang1,2,3, Hairong Chen1,2,3, István Bíró2,3, Zhiyi Zheng4, Yaodong Gu1,*

1 Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
2 Doctoral School on Safety and Security Science, Óbuda University, Budapest, 1034, Hungary
3 Faculty of Engineering, University of Szeged, Szeged, 6724, Hungary
4 Anta Sports Sciences Laboratory, Anta Group, Xiamen, 362212, China

* Corresponding Authors: Dong Sun. Email: email; Yaodong Gu. Email: email

Molecular & Cellular Biomechanics 2023, 20(1), 35-47. https://doi.org/10.32604/mcb.2023.041016

Abstract

Background: A children’s backpack is one of the important school supplies for school-age children. Long-term excessive weight can cause spinal deformity that cannot be reversed. This study compared a double helical spring decompression structure backpack (DHSB) with a traditional backpack (TB) to explore the optimization of decompression devices on upper body pressure. The finite element (FE) method was then used to explore the simulation of lumbar stress with different backpacks, in order to prove that DHSB can reduce the influence of backpack weight on lumbar vertebrae, avoid the occurrence of muscle discomfort and spinal deformity in children; Methods: 18 male children subjects (age: 12.5 ± 0.6 years; height: 145.5 ± 1.9 cm; bodyweight: 40.8 ± 3.1 kg) ran with DHSB and TB at a speed of 3.3 ± 0.2 m/s. Flexible pressure sensors were used to measure the pressure on the shoulder, back, and waist during running. The pressure data was then inputted into the FE model to simulate the effect of carrying different backpacks on the stress of the lumbar intervertebral disc (IVD); Result: There was a significant difference in shoulder and waist peak pressure between the DHSB and TB during the running posture. At a speed of 3.3 ± 0.2 m/s, the peak pressure of the shoulder and waist decreased. After finite element analysis, it was found that carrying DHSB on the back could effectively reduce the intervertebral disc pressure between L4-5 and L5-S1 by 27.9% and 34.1%, respectively; Conclusion: DHSB can effectively reduce the pressure on the shoulder and waist when children are running and can reduce the influence of backpacks on children’s posture to a certain extent. By finite element analysis, it is found that carrying DHSB can effectively reduce the stress of the lumbar intervertebral disc, and the damage to lumbar vertebrae is lower than with a TB.

Graphic Abstract

Effect of a Double Helical Spring Decompression Structure Backpack on the Lumbar Spine Biomechanics of School-Age Children: A Finite Element Study

Keywords


Cite This Article

APA Style
Li, F., Sun, D., Zhang, Q., Chen, H., Bíró, I. et al. (2023). Effect of a double helical spring decompression structure backpack on the lumbar spine biomechanics of school-age children: A finite element study. Molecular & Cellular Biomechanics, 20(1), 35-47. https://doi.org/10.32604/mcb.2023.041016
Vancouver Style
Li F, Sun D, Zhang Q, Chen H, Bíró I, Zheng Z, et al. Effect of a double helical spring decompression structure backpack on the lumbar spine biomechanics of school-age children: A finite element study. Mol Cellular Biomechanics . 2023;20(1):35-47 https://doi.org/10.32604/mcb.2023.041016
IEEE Style
F. Li et al., "Effect of a Double Helical Spring Decompression Structure Backpack on the Lumbar Spine Biomechanics of School-Age Children: A Finite Element Study," Mol. Cellular Biomechanics , vol. 20, no. 1, pp. 35-47. 2023. https://doi.org/10.32604/mcb.2023.041016



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 862

    View

  • 465

    Download

  • 0

    Like

Share Link