Molecular & Cellular Biomechanics

About the Journal

The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications. This journal will encourage the exchange of ideas that may be seminal, or hold promise to stimulate others to new findings.

Indexing and Abstracting

Applied Mechanics Reviews; BIOBASE (Elsevier); BIOSIS Preview-Web of Science (Clarivate Analytics); Cambridge Scientific Abstracts-Proquest; Ei Compendex/Engineering Village (Elsevier); EMBASE (Elsevier); GEOBASE (Elsevier); INSPEC (IET); Science Navigator; Scopus (Elsevier): Citescore 2021: 0.8; SNIP (Source Normalized Impact per Paper 2021): 0.094; World Textiles and Scopus; Zentralblatt fur Mathematik; Portico, etc...

  • Comparison of Biomechanical Characteristics during the Second Landing Phase in Female Latin Dancers: Evaluation of the Bounce and Side Chasse Step
  • Abstract Research on dance lower extremity joint motion has been limited. Thus, the purpose of this study was to investigate the lower limb biomechanics differences between the side chasse step (SCS) and the bounce step (BS) of the second landing phase in Jive. Thirteen female recreational Latin dancers (Age: 22 ± 2.5 years; Height: 1.65 ± 0.05 m; Weight: 50 ± 4.5 kg; Dance experience: 4 ± 2 years) were involved in the experiment. The same music was used throughout the data collection period. We intended to determine whether these two steps generate different kinematic and kinetic data. The ankle, hip, and knee joint angle, moment, velocity, and… More
  •   Views:159       Downloads:99        Download PDF
  • A Study on the Importance of Core Strength and Coordination Balance during Basketball Based on Biomechanics
  • Abstract When basketball players play against each other in a game, better coordinated balance can give them a better advantage. This paper briefly introduces the coordination balance and core strength of basketball players. Twenty basketball varsity members were selected from Chengdu College of University of Electronic Science and Technology of China as subjects for the test. The athletes were randomly divided into a control group and an experimental group. The control group received regular strength training, and the experimental group received core strength training in addition to regular training. Both groups underwent isometric muscle strength test, coordination and balance test and… More
  •   Views:114       Downloads:75        Download PDF
  • Analysis of Biomechanical Characteristics of Football Players at Different Levels Kicking with the Inner Edge of Instep
  • Abstract This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the… More
  •   Views:116       Downloads:72        Download PDF
  • Measurement of Myopia and Normal Human Choroidal Thickness Using Spectral Domain Optical Coherence Tomography
  • Abstract Myopia is a common ophthalmic deficiency. The structure and function of choroid layer is assumed to be associated with myopia. In this study, a laboratory developed spectral domain optical coherence tomography scanning system is used to image human eyes. The axial resolution of the system is about 7 μm, and the acquisition rate is 100 kHz. Firstly, a cross-sectional image was acquired by averaging 100 images from imaging posterior segment of each eye. The choroid thickness was measured by 11 discrete points. The average thickness of normal human eyes was (0.296 ± 0.126) mm, whereas the average choroid thickness of… More
  •   Views:122       Downloads:80        Download PDF
  • A New Approach through the Eye of a Needle and Its Potential Application in Bioscience
  • Abstract Putting the thread through the eye of a needle is a very ordinary issues in daily life. The mechanism of putting the thread through the eye of a needle is quite similar to threading a series of polymer chains through synthetic macrocycle in bioscience. A new rubbing approach to thread through the eye of a needle was proposed in this paper, and its potential application in the fields of biomechanics and mechanobiology to mimic the micro scale assembly processes was discussed. More
  •   Views:113       Downloads:81        Download PDF