Home / Journals / MCB / Vol.9, No.2, 2012
Table of Content
  • Open Access

    ARTICLE

    3D Numerical Study of Tumor Microenvironmental Flow in Response to Vascular-Disrupting Treatments

    Jie Wu∗,†, Yan Cai, Shixiong Xu§, Quan Long, Zurong Ding*, Cheng Dong∗,||
    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 95-126, 2012, DOI:10.3970/mcb.2012.009.095
    Abstract The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three… More >

  • Open Access

    ARTICLE

    Computational Study of Stented and Wrapped Aortic Aneurysms

    Feng Gao∗,†, Teruo Matsuzawa, Hiroshi Okada*
    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 127-140, 2012, DOI:10.3970/mcb.2012.009.127
    Abstract Aortic aneurysm is a pathology that involves the enlargement of the aortic diameter and has risk factors including aortic dissection. Aneurysm wrapping and stent placement has been used in the treatment of aneurysms. This study aimed to investigate the biomechanical effects of wrapping and stenting on aneurysm. The three-layered aortic aneurysm were created and fluid structure interaction were simulated in wrapped model and stented model. The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of wrapping and stenting. More >

  • Open Access

    ARTICLE

    Cellular Automata Modeling of Pulmonary Inflammation

    Angela Reynolds∗,†, Kittisak Koombua, Ramana M. Pidaparti†,‡, §, Kevin R. Ward†,¶
    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 141-156, 2012, DOI:10.3970/mcb.2012.009.141
    Abstract Better understanding of the acute/chronic inflammation in airways is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Local lung inflammation is triggered by many mechanisms within the lung, including pathogens. In this study, a cellular automata based model (CA) for pulmonary inflammation that incorporates biophysical processes during inflammatory responses was developed. The developed CA results in three possible outcomes related to homeostasis (healing), persistent infection, and resolved infection with high inflammation (inflamed state). The results from the model are validated qualitatively against other existing computational models. A sensitivity analysis was… More >

  • Open Access

    ARTICLE

    Effect of Age-Stiffening Tissues and Intraocular Pressure on Optic Nerve Damages

    Leo KK Leung, Match WL Ko, David CC Lam
    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 157-174, 2012, DOI:10.3970/mcb.2012.009.157
    Abstract Age-stiffening of ocular tissues is statistically linked to glaucoma in the elderly. In this study, the effects of age-stiffening on the lamina cribrosa, the primary site of glaucomatous nerve damages, were modeled using computational finite element analysis. We showed that glaucomatous nerve damages and peripheral vision loss behavior can be phenomenologically modeled by shear-based damage criterion. Using this damage criterion, the potential vision loss for 30 years old with mild hypertension of 25mmHg intraocular pressure (IOP) was estimated to be 4%. When the IOP was elevated to 35mmHg, the potential vision loss rose to 45%; and age-stiffening from 35 to… More >

Share Link

WeChat scan