Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (510)
  • Open Access

    ARTICLE

    Can Domain Knowledge Make Deep Models Smarter? Expert-Guided PointPillar (EG-PointPillar) for Enhanced 3D Object Detection

    Chiwan Ahn1, Daehee Kim2,*, Seongkeun Park3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073330 - 10 February 2026

    Abstract This paper proposes a deep learning-based 3D LiDAR perception framework designed for applications such as autonomous robots and vehicles. To address the high dependency on large-scale annotated data—an inherent limitation of deep learning models—this study introduces a hybrid perception architecture that incorporates expert-driven LiDAR processing techniques into the deep neural network. Traditional 3D LiDAR processing methods typically remove ground planes and apply distance- or density-based clustering for object detection. In this work, such expert knowledge is encoded as feature-level inputs and fused with the deep network, thereby mitigating the data dependency issue of conventional learning-based… More >

  • Open Access

    ARTICLE

    Computer Simulation and Experimental Approach in the Investigation of Deformation and Fracture of TPMS Structures Manufactured by 3D Printing

    Nataliya Kazantseva1,2,*, Nikolai Saharov1, Denis Davydov1,2, Nikolai Popov2, Maxim Il’inikh1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073078 - 10 February 2026

    Abstract Because of the developed surface of the Triply Periodic Minimum Surface (TPMS) structures, polylactide (PLA) products with a TPMS structure are thought to be promising bio soluble implants with the potential for targeted drug delivery. For implants, mechanical properties are key performance characteristics, so understanding the deformation and failure mechanisms is essential for selecting the appropriate implant structure. The deformation and fracture processes in PLA samples with different interior architectures have been studied through computer simulation and experimental research. Two TPMS topologies, the Schwarz Diamond and Gyroid architectures, were used for the sample construction by… More >

  • Open Access

    ARTICLE

    Boruta-LSTMAE: Feature-Enhanced Depth Image Denoising for 3D Recognition

    Fawad Salam Khan1,*, Noman Hasany2, Muzammil Ahmad Khan3, Shayan Abbas4, Sajjad Ahmed5, Muhammad Zorain6, Wai Yie Leong7,*, Susama Bagchi8, Sanjoy Kumar Debnath8

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072893 - 10 February 2026

    Abstract The initial noise present in the depth images obtained with RGB-D sensors is a combination of hardware limitations in addition to the environmental factors, due to the limited capabilities of sensors, which also produce poor computer vision results. The common image denoising techniques tend to remove significant image details and also remove noise, provided they are based on space and frequency filtering. The updated framework presented in this paper is a novel denoising model that makes use of Boruta-driven feature selection using a Long Short-Term Memory Autoencoder (LSTMAE). The Boruta algorithm identifies the most useful… More >

  • Open Access

    ARTICLE

    Effective Deep Learning Models for the Semantic Segmentation of 3D Human MRI Kidney Images

    Roshni Khedgaonkar1, Pravinkumar Sonsare2, Kavita Singh1, Ayman Altameem3, Hameed R. Farhan4, Salil Bharany5, Ateeq Ur Rehman6,*, Ahmad Almogren7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072651 - 10 February 2026

    Abstract Recent studies indicate that millions of individuals suffer from renal diseases, with renal carcinoma, a type of kidney cancer, emerging as both a chronic illness and a significant cause of mortality. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have become essential tools for diagnosing and assessing kidney disorders. However, accurate analysis of these medical images is critical for detecting and evaluating tumor severity. This study introduces an integrated hybrid framework that combines three complementary deep learning models for kidney tumor segmentation from MRI images. The proposed framework fuses a customized U-Net and Mask R-CNN… More >

  • Open Access

    ARTICLE

    Real-Time 3D Scene Perception in Dynamic Urban Environments via Street Detection Gaussians

    Yu Du1, Runwei Guan2, Ho-Pun Lam1, Jeremy Smith3, Yutao Yue4,5, Ka Lok Man1, Yan Li6,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072544 - 10 February 2026

    Abstract As a cornerstone for applications such as autonomous driving, 3D urban perception is a burgeoning field of study. Enhancing the performance and robustness of these perception systems is crucial for ensuring the safety of next-generation autonomous vehicles. In this work, we introduce a novel neural scene representation called Street Detection Gaussians (SDGs), which redefines urban 3D perception through an integrated architecture unifying reconstruction and detection. At its core lies the dynamic Gaussian representation, where time-conditioned parameterization enables simultaneous modeling of static environments and dynamic objects through physically constrained Gaussian evolution. The framework’s radar-enhanced perception module… More >

  • Open Access

    ARTICLE

    Development of AI-Based Monitoring System for Stratified Quality Assessment of 3D Printed Parts

    Yewon Choi1,2, Song Hyeon Ju2, Jungsoo Nam2,*, Min Ku Kim1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071817 - 29 January 2026

    Abstract The composite material layering process has attracted considerable attention due to its production advantages, including high scalability and compatibility with a wide range of raw materials. However, changes in process conditions can lead to degradation in layer quality and non-uniformity, highlighting the need for real-time monitoring to improve overall quality and efficiency. In this study, an AI-based monitoring system was developed to evaluate layer width and assess quality in real time. Three deep learning models Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once version 8 (YOLOv8), and Single Shot MultiBox Detector (SSD) were… More >

  • Open Access

    ARTICLE

    3D Photogrammetric Modelling for Digital Twin Development: Accuracy Assessment Using UAV Multi-Altitude Imaging

    Nur Afikah Juhari, Khairul Nizam Tahar*

    Revue Internationale de Géomatique, Vol.35, pp. 1-11, 2026, DOI:10.32604/rig.2026.070991 - 19 January 2026

    Abstract The use of Unmanned Aerial Vehicles (UAVs) in photogrammetry has grown rapidly due to enhanced flight stability, high-resolution imaging, and advanced Structure from Motion (SfM) algorithms. This study investigates the potential of UAVs as a cost-effective alternative to Terrestrial Laser Scanners (TLS) for 3D building reconstruction. A 3D model of Bangunan Sarjana was generated in Agisoft Metashape Professional v.2.0.2 using 492 aerial images captured at flying altitudes of 40, 50, and 60 m. Ground control points were established using GNSS (RTK-VRS), and Total Station measurements were employed for accuracy validation. The results indicate that the 60 More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    Development of Patient-Derived Conditionally Reprogrammed 3D Breast Cancer Culture Models for Drug Sensitivity Evaluation

    Jing Cai1,#, Haoyun Zhu1,#, Weiling Guo1, Ting Huang1, Pangzhou Chen1,2, Wen Zhou1, Ziyun Guan1,3,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069902 - 30 December 2025

    Abstract Background: Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity. Current preclinical models, however, are inadequate for predicting individual patient responses towards different drugs. This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations. Methods: Tumor and adjacent tissues from female breast cancer patients were collected during surgery. Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models. The obtained patient-derived conditional reprogramming breast cancer (CRBC) cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres… More >

Displaying 1-10 on page 1 of 510. Per Page