Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,323)
  • Open Access

    ARTICLE

    Solution Methods for Nonsymmetric Linear Systems with Large off-Diagonal Elements and Discontinuous Coefficients

    Dan Gordon1, Rachel Gordon2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.053.023

    Abstract Linear systems with very large off-diagonal elements and discontinuous coefficients (LODC systems) arise in some modeling cases, such as those involving heterogeneous media. Such problems are usually solved by domain decomposition methods, but these can be difficult to implement on unstructured grids or when the boundaries between subdomains have a complicated geometry. Gordon and Gordon have shown that Björck and Elfving's (sequential) CGMN algorithm and their own block-parallel CARP-CG are very robust and efficient on strongly convection dominated cases (but without discontinuous coefficients). They have also shown that scaling the equations by dividing each equation… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Flows over a Pair of Cylinders at Different Arrangements using the Immersed Boundary Method

    A.R. da Silva1, A. Silveira-Neto2,3, D.A. Rade2,4, R.Francis4, E.A. Santos4

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.3, pp. 285-304, 2009, DOI:10.3970/cmes.2009.050.285

    Abstract In the context of computational fluid dynamics a numerical investigation of incompressible flow around fixed pairs of rigid circular cylinders was carried out. The two-dimensional filtered Navier-Stokes equations with the Smagorinsky sub-grid scale model were solved using a Cartesian non-uniform grid. The immersed Boundary Method with the Virtual Physical Model was used in order to model the presence of two circular cylinders embedded in the flow. The fractional time step method was used to couple pressure and velocity fields. The simulations were carried out for Reynolds number equal to 72,000 for pitch ratio equal to More >

  • Open Access

    ARTICLE

    Wavelet Based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Shekarchi2, Mohammad Rahimian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 161-190, 2009, DOI:10.3970/cmes.2009.050.161

    Abstract We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs over irregularly shaped domains. For a problem defined over Ω∈ℜd, the boundary of an irregularly shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside function along the normal direction and a piecewise continuous tangential curve. The link between the original wavelet based adaptive method presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the generalized one is given through the use of simple Heaviside More >

  • Open Access

    ARTICLE

    Dynamic Analysis by Meshless Local Petrov-Galerkin Formulations Considering a Time-Marching Scheme Based on Implicit Green's Functions

    D. Soares Jr.1, J. Sladek2, V. Sladek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 115-140, 2009, DOI:10.3970/cmes.2009.050.115

    Abstract In recent years the idea of using mesh-free or mesh-less methods for numerical solution of partial differential equations has received much attention, due to their potential advantage in eliminating the costly effort of mesh generation and re-meshing. A variety of meshless methods has been proposed so far. Many of them are derived from a weak-form formulation on global domain or a set of local subdomains. In the global formulation background cells are required for the integration of the weak form. In methods based on local weak-form formulation no cells are required and therefore they are… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Electromagnetic Wave Propagation by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr. 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 97-114, 2009, DOI:10.3970/cmes.2009.050.097

    Abstract In this work, meshless methods based on the local Petrov-Galerkin (MLPG) approach are presented to analyse electromagnetic wave propagation problems. Formulations adopting the Heaviside step function and the Gaussian weight function as the test functions in the local weak form are considered. The moving least square (MLS) method is used to approximate the physical quantities in the local integral equations. After spatial discretization is carried out, a system of ordinary differential equations of second order is obtained. This system is solved in the time-domain by the Houbolt's method, allowing the computation of the so-called primary More >

  • Open Access

    ARTICLE

    A New Time Domain Boundary Integral Equation and Efficient Time Domain Boundary Element Scheme of Elastodynamics

    Z.H.Yao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 21-46, 2009, DOI:10.3970/cmes.2009.050.021

    Abstract The traditional time domain boundary integral equation (TDBIE) of elastodynamics is formulated based on the time dependent fundamental solution and the reciprocal theorem of elastodynamics. The time dependent fundamental solution of the elastodynamics is the response of the infinite elastic medium under a unit concentrate impulsive force subjected at a point and at an instant, including not only the pressure wave and shear wave, but also the Laplace wave with speed between that of P and S waves. In this paper, a new TDBIE is derived directly from the initial boundary value problem of the… More >

  • Open Access

    ARTICLE

    Vortex Ring Formation within a Spherical Container with Natural Convection

    Gerardo Anguiano-Orozco1,2, Rubén Avila3

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 217-254, 2009, DOI:10.3970/cmes.2009.049.217

    Abstract A numerical investigation of the transient, three dimensional, laminar natural convection of a fluid confined in a spherical container is carried out. Initially the fluid is quiescent with a uniform temperature Ti equal to the temperature of the wall of the container. At time t=0, the temperature of the wall is suddenly lowered to a uniform temperature Tw=0. The natural convection, that conducts to a vortex ring formation within the sphere, is driven by a terrestrial gravity force (laboratory gravity) and by the step change in the temperature of the wall. A scaling analysis of a simplified… More >

  • Open Access

    ARTICLE

    A Computational Fluid Dynamics Study of a 2D Airfoil in Hovering Flight Under Ground Effect

    J.M.C.Pereira1, N.A.R.Maia1, J.C.F.Pereira1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 113-142, 2009, DOI:10.3970/cmes.2009.049.113

    Abstract We present a 2D incompressible Navier-Stokes numerical simulation of a virtual model of an elliptic, or flat plate, foil in hovering flight configuration. Computations obtained with a general purpose solver were validated against reference data on forward flapping flight, normal or dragonfly hovering. The moving mesh technique allows airfoil translation and angular mesh movement accompaining the airfoil stroke motion. Close to the ground the mesh deforms to occupy the narrow computational domain formed between the airfoil and the ground. Computations have been carried out for some parameters, including the distances h between the foil center and… More >

  • Open Access

    ARTICLE

    An Improved Quadrilateral Flat Element with Drilling Degrees of Freedom for Shell Structural Analysis

    H.Nguyen-Van1, N.Mai-Duy1 and T.Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 81-112, 2009, DOI:10.3970/cmes.2009.049.081

    Abstract This paper reports the development of a simple and efficient 4-node flat shell element with six degrees of freedom per node for the analysis of arbitrary shell structures. The element is developed by incorporating a strain smoothing technique into a flat shell finite element approach. The membrane part is formulated by applying the smoothing operation on a quadrilateral membrane element using Allman-type interpolation functions with drilling DOFs. The plate-bending component is established by a combination of the smoothed curvature and the substitute shear strain fields. As a result, the bending and a part of membrane More >

  • Open Access

    ARTICLE

    Dynamical Response of Two Axially Pre-Strained System Comprising of a Covering Layer and a Half Space to Rectangular Time-Harmonic Forces

    I. Emiroglu1, F. Tasci1, S. D. Akbarov2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 47-68, 2009, DOI:10.3970/cmes.2009.049.047

    Abstract The time-harmonic dynamical stress field in the system comprising two axially pre-stressed covering layer and two axially pre-stressed half space was studied under the action of uniformly distributed forces on free face plane of the covering layer. It is assumed that the forces are distributed within the rectangular area. The study was conducted within the scope of the piecewise homogeneous body model with the use of three-dimensional theory of elastic waves in an initially stressed bodies. The materials of the layer and half-space were assumed to be isotropic and homogeneous. The corresponding three-dimensional boundary-value-contact problem… More >

Displaying 4021-4030 on page 403 of 4323. Per Page