Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,743)
  • Open Access


    Optimal Scheduling Strategy of Source-Load-Storage Based on Wind Power Absorption Benefit

    Jie Ma1, Pengcheng Yue2, Haozheng Yu1, Yuqing Zhang3, Youwen Zhang1, Cuiping Li3, Junhui Li3,*, Wenwen Qin3, Yong Guo1

    Energy Engineering, Vol.121, No.7, pp. 1823-1846, 2024, DOI:10.32604/ee.2024.048225

    Abstract In recent years, the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing, but the peak regulation capacity of the power grid in the three north regions of China is limited, resulting in insufficient local wind power consumption capacity. Therefore, this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid's wind power consumption capacity. The objective of the upper model is to minimize the peak-valley difference of the system load, which is mainly to optimize the system… More >

  • Open Access


    Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

    Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3

    Journal of Renewable Materials, Vol.12, No.4, pp. 843-867, 2024, DOI:10.32604/jrm.2024.049942

    Abstract The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on… More >

  • Open Access


    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*

    Journal of Renewable Materials, Vol.12, No.4, pp. 721-736, 2024, DOI:10.32604/jrm.2024.031050

    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials.… More >

  • Open Access


    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

    Xin Xue1,2,3, Haitao Li1,2,3,*, Rodolfo Lorenzo4

    Journal of Renewable Materials, Vol.12, No.4, pp. 869-894, 2024, DOI:10.32604/jrm.2024.029602

    Abstract This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber (BS) in literature. According to literature reviews, the strength of BS under different load modes is affected by a series of factors, such as the type of original bamboo, growth position, resin content, treatment method and density. Therefore, different production processes can be adopted according to different requirements, and bamboo scrimbers can also be classified accordingly. In addition, this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS, so that readers can More > Graphic Abstract

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

  • Open Access


    Identification of Damage in Steel‒Concrete Composite Beams Based on Wavelet Analysis and Deep Learning

    Chengpeng Zhang, Junfeng Shi*, Caiping Huang

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 465-483, 2024, DOI:10.32604/sdhm.2024.048705

    Abstract In this paper, an intelligent damage detection approach is proposed for steel-concrete composite beams based on deep learning and wavelet analysis. To demonstrate the feasibility of this approach, first, following the guidelines provided by relevant standards, steel-concrete composite beams are designed, and six different damage incidents are established. Second, a steel ball is used for free-fall excitation on the surface of the steel-concrete composite beams and a low-temperature-sensitive quasi-distributed long-gauge fiber Bragg grating (FBG) strain sensor is used to obtain the strain signals of the steel-concrete composite beams with different damage types. To reduce the… More >

  • Open Access


    Research progress on natural products against hepatocellular carcinoma


    BIOCELL, Vol.48, No.6, pp. 905-922, 2024, DOI:10.32604/biocell.2024.050396

    Abstract Hepatocellular carcinoma (HCC) remains a prevalent and challenging malignancy globally, characterized by its numerous causal factors and generally unfavorable prognosis. In the relentless pursuit of effective treatment modalities, natural products have emerged as a promising and relatively non-toxic alternative, garnering significant interest. The integration of natural products with contemporary medical research has yielded encouraging therapeutic outcomes in the management of HCC. This review offers a comprehensive overview of the causal factors underlying HCC, and the diverse treatment options available, and highlights the advancements made by natural products in anti-HCC research. Particularly, we provide an outline More >

  • Open Access


    Does young feces make the elderly live better? Application of fecal microbiota transplantation in healthy aging


    BIOCELL, Vol.48, No.6, pp. 873-887, 2024, DOI:10.32604/biocell.2024.050324

    Abstract As we are facing an aging society, anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings. Gut microbiota has become a key factor in the anti-aging process. Modulation of gut microbiota by fecal microbiota transplantation (FMT) to prevent frailty and unhealthy aging has been a hot topic of research. This narrative review summarizes the benefits of FMT for health span and lifespan, brains, eyes, productive systems, bones, and others. The mechanisms of FMT in improving healthy aging are discussed. The increased beneficial bacteria and More >

  • Open Access


    Bhlhe40 protects cochlear hair cell-like HEI-OC1 cells against HO‑triggered oxidative injury


    BIOCELL, Vol.48, No.6, pp. 991-999, 2024, DOI:10.32604/biocell.2024.050219

    Abstract Background: Cochlear hair cell injury is a common pathological feature of hearing loss. The basic helix-loop-helix family, member e40 (Bhlhe40), a gene belonging to the basic helix-loop-helix (bHLH) family, exhibits strong transcriptional repression activity. Methods: Oxidative damage, in House Ear Institute-Organ of Corti 1 (HEI‑OC1) cells, was caused using hydrogen peroxide (HO). The Ad-Bhlhe40 particles were constructed to overexpress Bhlhe40 in HEI-OC1 cells. Various assays including cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay (TUNEL), flow cytometry, immunofluorescence, and corresponding commercial kits were employed to investigate the impacts of Bhlhe40 on cell viability, apoptosis,… More > Graphic Abstract

    <i>Bhlhe40</i> protects cochlear hair cell-like HEI-OC1 cells against HO‑triggered oxidative injury

  • Open Access


    Study of Flow and Heat Transfer in an Ejector-Driven Swirl Anti-Icing Chamber

    Yi Tu1,*, Yuan Wu2, Yu Zeng3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 989-1014, 2024, DOI:10.32604/fdmp.2024.045624

    Abstract The formation of ice on the leading edge of aircraft engines is a serious issue, as it can have catastrophic consequences. The Swirl Anti-Icing (SAI) system, driven by ejection, circulates hot fluid within a 360° annular chamber to heat the engine inlet lip surface and prevent icing. This study employs a validated Computational Fluid Dynamics (CFD) approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber. Additionally, the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the… More >

  • Open Access


    Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains

    Xiang Kan1, Yan Li2, Tian Li1,*, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1075-1091, 2024, DOI:10.32604/fdmp.2023.044050

    Abstract A pantograph serves as a vital device for the collection of electricity in trains. However, its aerodynamic resistance can limit the train’s running speed. As installing fairings around the pantograph is known to effectively reduce the resistance, in this study, different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed. In particular, this is accomplished through numerical simulations based on the k-ω Shear Stress Transport (SST) two-equation turbulence model. The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph, thereby reducing its aerodynamic resistance. However, it More >

Displaying 1-10 on page 1 of 3743. Per Page