Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus

    Muhammad Asif Zahoor Raja1, Aqsa Zafar Abbasi2, Kottakkaran Sooppy Nisar3,*, Ayesha Rafiq2, Muhammad Shoaib4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2133-2153, 2025, DOI:10.32604/cmes.2025.058020 - 30 May 2025

    Abstract Being a nonlinear operator, fractional derivatives can affect the enforcement of existence at any given time. As a result, the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations (FODEs). The goal of this study is to increase the fractional model of the TB virus’s (FMTBV) accuracy. Stochastic solvers have never been used to solve FMTBV previously. The Bayesian regularized artificial (BRA) method and neural networks (NNs), often referred to as BRA-NNs, were used to solve the FMTBV model. Each scenario features five occurrences that each reflect a different… More >

  • Open Access

    ARTICLE

    Models for Predicting the Minimum Miscibility Pressure (MMP) of CO2-Oil in Ultra-Deep Oil Reservoirs Based on Machine Learning

    Kun Li1, Tianfu Li2,*, Xiuwei Wang1, Qingchun Meng1, Zhenjie Wang1, Jinyang Luo1,2, Zhaohui Wang1, Yuedong Yao2

    Energy Engineering, Vol.122, No.6, pp. 2215-2238, 2025, DOI:10.32604/ee.2025.062876 - 29 May 2025

    Abstract CO2 flooding for enhanced oil recovery (EOR) not only enables underground carbon storage but also plays a critical role in tertiary oil recovery. However, its displacement efficiency is constrained by whether CO2 and crude oil achieve miscibility, necessitating precise prediction of the minimum miscibility pressure (MMP) for CO2-oil systems. Traditional methods, such as experimental measurements and empirical correlations, face challenges including time-consuming procedures and limited applicability. In contrast, artificial intelligence (AI) algorithms have emerged as superior alternatives due to their efficiency, broad applicability, and high prediction accuracy. This study employs four AI algorithms—Random Forest Regression (RFR), Genetic… More >

  • Open Access

    ARTICLE

    An Adaptive Features Fusion Convolutional Neural Network for Multi-Class Agriculture Pest Detection

    Muhammad Qasim1,2, Syed M. Adnan Shah1, Qamas Gul Khan Safi1, Danish Mahmood2, Adeel Iqbal3,*, Ali Nauman3, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4429-4445, 2025, DOI:10.32604/cmc.2025.065060 - 19 May 2025

    Abstract Grains are the most important food consumed globally, yet their yield can be severely impacted by pest infestations. Addressing this issue, scientists and researchers strive to enhance the yield-to-seed ratio through effective pest detection methods. Traditional approaches often rely on preprocessed datasets, but there is a growing need for solutions that utilize real-time images of pests in their natural habitat. Our study introduces a novel two-step approach to tackle this challenge. Initially, raw images with complex backgrounds are captured. In the subsequent step, feature extraction is performed using both hand-crafted algorithms (Haralick, LBP, and Color… More >

  • Open Access

    ARTICLE

    Artificial Neural Networks for Optimizing Alumina Al2O3 Particle and Droplet Behavior in 12kK Ar-H2 Atmospheric Plasma Spraying

    Ridha Djebali1,*, Bernard Pateyron2, Mokhtar Ferhi1, Mohamed Ouerhani3, Karim Khemiri1, Montassar Najari1, M. Ammar Abbassi4, Chohdi Amri5, Ridha Ennetta6, Zied Driss7

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 441-461, 2025, DOI:10.32604/fhmt.2025.063375 - 25 April 2025

    Abstract This paper investigates the application of Direct Current Atmospheric Plasma Spraying (DC-APS) as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates. The process uses a high-speed, high-temperature plasma jet to melt and propel the feedstock powder particles, making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells, wind turbines, and fuel cells. The integration of nanostructured alumina (Al2O3) thin films into multilayer coatings is considered a promising advancement that improves mechanical strength, thermal stability, and environmental resistance. The More >

  • Open Access

    ARTICLE

    A Neural Network-Driven Method for State of Charge Estimation Using Dynamic AC Impedance in Lithium-Ion Batteries

    Yi-Feng Luo1, Guan-Jhu Chen2,*, Chun-Liang Liu3, Yen-Tse Chung4

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 823-844, 2025, DOI:10.32604/cmc.2025.061498 - 26 March 2025

    Abstract As lithium-ion batteries become increasingly prevalent in electric scooters, vehicles, mobile devices, and energy storage systems, accurate estimation of remaining battery capacity is crucial for optimizing system performance and reliability. Unlike traditional methods that rely on static alternating internal resistance (SAIR) measurements in an open-circuit state, this study presents a real-time state of charge (SOC) estimation method combining dynamic alternating internal resistance (DAIR) with artificial neural networks (ANN). The system simultaneously measures electrochemical impedance |Z| at various frequencies, discharge C-rate, and battery surface temperature during the discharge process, using these parameters for ANN training. The… More >

  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

  • Open Access

    ARTICLE

    Machine Learning Stroke Prediction in Smart Healthcare: Integrating Fuzzy K-Nearest Neighbor and Artificial Neural Networks with Feature Selection Techniques

    Abdul Ahad1,2, Ira Puspitasari1,3,*, Jiangbin Zheng2, Shamsher Ullah4, Farhan Ullah5, Sheikh Tahir Bakhsh6, Ivan Miguel Pires7,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5115-5134, 2025, DOI:10.32604/cmc.2025.062605 - 06 March 2025

    Abstract This research explores the use of Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks (ANN) for predicting heart stroke incidents, focusing on the impact of feature selection methods, specifically Chi-Square and Best First Search (BFS). The study demonstrates that BFS significantly enhances the performance of both classifiers. With BFS preprocessing, the ANN model achieved an impressive accuracy of 97.5%, precision and recall of 97.5%, and an Receiver Operating Characteristics (ROC) area of 97.9%, outperforming the Chi-Square-based ANN, which recorded an accuracy of 91.4%. Similarly, the F-KNN model with BFS achieved an accuracy of 96.3%, precision More >

  • Open Access

    ARTICLE

    Evaluating Effect of Magnetic Field on Nusselt Number and Friction Factor of Fe3O4-TiO2/Water Nanofluids in Heat-Sink Using Artificial Intelligence Techniques

    L. S. Sundar*, Sérgio M. O. Tavares, António M. B. Pereira, Antonio C. M. Sousa

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 131-162, 2025, DOI:10.32604/fhmt.2025.055854 - 26 February 2025

    Abstract The experimental analysis takes too much time-consuming process and requires considerable effort, while, the Artificial Neural Network (ANN) algorithms are simple, affordable, and fast, and they allow us to make a relevant analysis in establishing an appropriate relationship between the input and output parameters. This paper deals with the use of back-propagation ANN algorithms for the experimental data of heat transfer coefficient, Nusselt number, and friction factor of water-based Fe3O4-TiO2 magnetic hybrid nanofluids in a mini heat sink under magnetic fields. The data considered for the ANN network is at different Reynolds numbers (239 to 1874),… More >

  • Open Access

    ARTICLE

    Predicting the Construction Quality of Projects by Using Hybrid Soft Computing Techniques

    Ching-Lung Fan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1995-2017, 2025, DOI:10.32604/cmes.2025.059414 - 27 January 2025

    Abstract The construction phase of a project is a critical factor that significantly impacts its overall success. The construction environment is characterized by uncertainty and dynamism, involving nonlinear relationships among various factors that affect construction quality. This study utilized 987 construction inspection records from 1993 to 2022, obtained from the Taiwanese Public Construction Management Information System (PCMIS), to determine the relationships between construction factors and quality. First, fuzzy logic was applied to calculate the weights of 499 defects, and 25 critical construction factors were selected based on these weight values. Next, a deep neural network was… More >

  • Open Access

    REVIEW

    Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management

    Moein Tosan1, Mohammad Reza Gharib2,*, Nasrin Fathollahzadeh Attar3, Ali Maroosi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1109-1154, 2025, DOI:10.32604/cmes.2025.058595 - 27 January 2025

    Abstract Accurate estimation of evapotranspiration (ET) is crucial for efficient water resource management, particularly in the face of climate change and increasing water scarcity. This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers, selected according to PRISMA guidelines, to evaluate the performance of Hybrid Artificial Neural Networks (HANNs) in ET estimation. The findings demonstrate that HANNs, particularly those combining Multilayer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs), are highly effective in capturing the complex nonlinear relationships and temporal dependencies characteristic of hydrological processes. These… More >

Displaying 1-10 on page 1 of 153. Per Page