Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access


    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples, and the… More >

  • Open Access


    Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios

    Lyuchao Liao1,2, Hankun Xiao2,*, Pengqi Xing2, Zhenhua Gan1,2, Youpeng He2, Jiajun Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 557-576, 2024, DOI:10.32604/cmes.2024.047452

    Abstract Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imperfect data in perceiving environmental information, rendering them a vital issue in the practical application of autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in the Roundabouts. Specifically, the model incorporates an enhanced variational… More >

  • Open Access


    An Image Fingerprint and Attention Mechanism Based Load Estimation Algorithm for Electric Power System

    Qing Zhu1,*, Linlin Gu1,2, Huijie Lin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 577-591, 2024, DOI:10.32604/cmes.2023.043307

    Abstract With the rapid development of electric power systems, load estimation plays an important role in system operation and planning. Usually, load estimation techniques contain traditional, time series, regression analysis-based, and machine learning-based estimation. Since the machine learning-based method can lead to better performance, in this paper, a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed. First, an image fingerprint construction is proposed for training data. After the data preprocessing, the training data matrix is constructed by the cyclic shift and cubic spline interpolation. Then, the linear mapping and the gray-color transformation method are proposed to… More >

  • Open Access


    Scheme Based on Multi-Level Patch Attention and Lesion Localization for Diabetic Retinopathy Grading

    Zhuoqun Xia1, Hangyu Hu1, Wenjing Li2,3, Qisheng Jiang1, Lan Pu1, Yicong Shu1, Arun Kumar Sangaiah4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 409-430, 2024, DOI:10.32604/cmes.2024.030052

    Abstract Early screening of diabetes retinopathy (DR) plays an important role in preventing irreversible blindness. Existing research has failed to fully explore effective DR lesion information in fundus maps. Besides, traditional attention schemes have not considered the impact of lesion type differences on grading, resulting in unreasonable extraction of important lesion features. Therefore, this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator (MPAG) and a lesion localization module (LLM). Firstly, MPAG is used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained… More >

  • Open Access


    Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism

    Lujuan Deng, Ruochong Fu*, Zuhe Li, Boyi Liu, Mengze Xue, Yuhao Cui

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4071-4089, 2024, DOI:10.32604/cmc.2024.048200

    Abstract Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the… More >

  • Open Access


    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic… More >

  • Open Access


    Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues

    Lifang Fu1, Huanxin Peng2,*, Changjin Ma2, Yuhan Liu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4399-4416, 2024, DOI:10.32604/cmc.2024.047053

    Abstract In recent years, how to efficiently and accurately identify multi-model fake news has become more challenging. First, multi-model data provides more evidence but not all are equally important. Secondly, social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical. Unfortunately, existing approaches fail to handle these problems. This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues (TD-MMC), which utilizes three valuable multi-model clues: text-model importance, text-image complementary, and text-image inconsistency. TD-MMC is dominated by textural content and… More >

  • Open Access


    A Cover-Independent Deep Image Hiding Method Based on Domain Attention Mechanism

    Nannan Wu1, Xianyi Chen1,*, James Msughter Adeke2, Junjie Zhao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3001-3019, 2024, DOI:10.32604/cmc.2023.045311

    Abstract Recently, deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding. However, these approaches have some limitations. For example, a cover image lacks self-adaptability, information leakage, or weak concealment. To address these issues, this study proposes a universal and adaptable image-hiding method. First, a domain attention mechanism is designed by combining the Atrous convolution, which makes better use of the relationship between the secret image domain and the cover image domain. Second, to improve perceived human similarity, perceptual loss is incorporated into the training process. The experimental results are promising, with the proposed method achieving an… More >

  • Open Access


    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined with transfer learning techniques, the… More >

  • Open Access


    CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing

    Weiya Shi1,*, Shaowen Zhang2, Shiqiang Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3209-3231, 2024, DOI:10.32604/cmes.2023.044863

    Abstract In recent years, there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote sensing remains a formidable challenge. The deep network structure will bring about the loss of object features, resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers. Additionally, the features of small objects are susceptible to interference from background features contained within the image, leading to a decline in detection accuracy. Moreover, the sensitivity of small… More >

Displaying 1-10 on page 1 of 120. Per Page