Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access


    PAL-BERT: An Improved Question Answering Model

    Wenfeng Zheng1, Siyu Lu1, Zhuohang Cai1, Ruiyang Wang1, Lei Wang2, Lirong Yin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2729-2745, 2024, DOI:10.32604/cmes.2023.046692

    Abstract In the field of natural language processing (NLP), there have been various pre-training language models in recent years, with question answering systems gaining significant attention. However, as algorithms, data, and computing power advance, the issue of increasingly larger models and a growing number of parameters has surfaced. Consequently, model training has become more costly and less efficient. To enhance the efficiency and accuracy of the training process while reducing the model volume, this paper proposes a first-order pruning model PAL-BERT based on the ALBERT model according to the characteristics of question-answering (QA) system and language model. Firstly, a first-order network… More >

  • Open Access


    Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling

    Bayi Xu1, Lei Sun2,*, Xiuqing Mao2, Chengwei Liu3, Zhiyi Ding2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1995-2022, 2024, DOI:10.32604/cmc.2023.046478

    Abstract In recent years, frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security. This paper presents a novel intrusion detection system consisting of a data preprocessing stage and a deep learning model for accurately identifying network attacks. We have proposed four deep neural network models, which are constructed using architectures such as Convolutional Neural Networks (CNN), Bi-directional Long Short-Term Memory (BiLSTM), Bidirectional Gate Recurrent Unit (BiGRU), and Attention mechanism. These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models, we apply various preprocessing… More >

  • Open Access


    Network Intrusion Traffic Detection Based on Feature Extraction

    Xuecheng Yu1, Yan Huang2, Yu Zhang1, Mingyang Song1, Zhenhong Jia1,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 473-492, 2024, DOI:10.32604/cmc.2023.044999

    Abstract With the increasing dimensionality of network traffic, extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems (IDS). However, both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features, resulting in an analysis that is not an optimal set. Therefore, in order to extract more representative traffic features as well as to improve the accuracy of traffic identification, this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T2 and a multilayer convolutional bidirectional long short-term memory (MSC_BiLSTM)… More >

  • Open Access


    One Dimensional Conv-BiLSTM Network with Attention Mechanism for IoT Intrusion Detection

    Bauyrzhan Omarov1,*, Zhuldyz Sailaukyzy2, Alfiya Bigaliyeva2, Adilzhan Kereyev3, Lyazat Naizabayeva4, Aigul Dautbayeva5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3765-3781, 2023, DOI:10.32604/cmc.2023.042469

    Abstract In the face of escalating intricacy and heterogeneity within Internet of Things (IoT) network landscapes, the imperative for adept intrusion detection techniques has never been more pressing. This paper delineates a pioneering deep learning-based intrusion detection model: the One Dimensional Convolutional Neural Networks (1D-CNN) and Bidirectional Long Short-Term Memory (BiLSTM) Network (Conv-BiLSTM) augmented with an Attention Mechanism. The primary objective of this research is to engineer a sophisticated model proficient in discerning the nuanced patterns and temporal dependencies quintessential to IoT network traffic data, thereby facilitating the precise categorization of a myriad of intrusion types. Methodology: The proposed model amalgamates… More >

  • Open Access


    PoIR: A Node Selection Mechanism in Reputation-Based Blockchain Consensus Using Bidirectional LSTM Regression Model

    Jauzak Hussaini Windiatmaja, Delphi Hanggoro, Muhammad Salman, Riri Fitri Sari*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2309-2339, 2023, DOI:10.32604/cmc.2023.041152

    Abstract This research presents a reputation-based blockchain consensus mechanism called Proof of Intelligent Reputation (PoIR) as an alternative to traditional Proof of Work (PoW). PoIR addresses the limitations of existing reputation-based consensus mechanisms by proposing a more decentralized and fair node selection process. The proposed PoIR consensus combines Bidirectional Long Short-Term Memory (BiLSTM) with the Network Entity Reputation Database (NERD) to generate reputation scores for network entities and select authoritative nodes. NERD records network entity profiles based on various sources, i.e., Warden, Blacklists, DShield, AlienVault Open Threat Exchange (OTX), and MISP (Malware Information Sharing Platform). It summarizes these profile records into… More >

  • Open Access


    Action Recognition for Multiview Skeleton 3D Data Using NTURGB + D Dataset

    Rosepreet Kaur Bhogal1,*, V. Devendran2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2759-2772, 2023, DOI:10.32604/csse.2023.034862

    Abstract Human activity recognition is a recent area of research for researchers. Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities, develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition. This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further proposed two neural networks: convolutional neural network recurrent neural network_1 (CNN_RNN_1), used to find the… More >

  • Open Access


    Injections Attacks Efficient and Secure Techniques Based on Bidirectional Long Short Time Memory Model

    Abdulgbar A. R. Farea1, Gehad Abdullah Amran2,*, Ebraheem Farea3, Amerah Alabrah4,*, Ahmed A. Abdulraheem5, Muhammad Mursil6, Mohammed A. A. Al-qaness7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3605-3622, 2023, DOI:10.32604/cmc.2023.040121

    Abstract E-commerce, online ticketing, online banking, and other web-based applications that handle sensitive data, such as passwords, payment information, and financial information, are widely used. Various web developers may have varying levels of understanding when it comes to securing an online application. Structured Query language SQL injection and cross-site scripting are the two vulnerabilities defined by the Open Web Application Security Project (OWASP) for its 2017 Top Ten List Cross Site Scripting (XSS). An attacker can exploit these two flaws and launch malicious web-based actions as a result of these flaws. Many published articles focused on these attacks’ binary classification. This… More >

  • Open Access


    A Robust Approach for Detection and Classification of KOA Based on BILSTM Network

    Abdul Qadir1, Rabbia Mahum1, Suliman Aladhadh2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1365-1384, 2023, DOI:10.32604/csse.2023.037033

    Abstract A considerable portion of the population now experiences osteoarthritis of the knee, spine, and hip due to lifestyle changes. Therefore, early treatment, recognition and prevention are essential to reduce damage; nevertheless, this time-consuming activity necessitates a variety of tests and in-depth analysis by physicians. To overcome the existing challenges in the early detection of Knee Osteoarthritis (KOA), an effective automated technique, prompt recognition, and correct categorization are required. This work suggests a method based on an improved deep learning algorithm that makes use of data from the knee images after segmentation to detect KOA and its severity using the Kellgren-Lawrence… More >

  • Open Access


    Prediction-Based Thunderstorm Path Recovery Method Using CNN-BiLSTM

    Xu Yang1,2, Ling Zhuang1, Yuqiang Sun3, Wenjie Zhang4,5,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1637-1654, 2023, DOI:10.32604/iasc.2023.039879

    Abstract The loss of three-dimensional atmospheric electric field (3DAEF) data has a negative impact on thunderstorm detection. This paper proposes a method for thunderstorm point charge path recovery. Based on the relationship between a point charge and 3DAEF, we derive corresponding localization formulae by establishing a point charge localization model. Generally, point charge movement paths are obtained after fitting time series localization results. However, AEF data losses make it difficult to fit and visualize paths. Therefore, using available AEF data without loss as input, we design a hybrid model combining the convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM)… More >

  • Open Access


    A PERT-BiLSTM-Att Model for Online Public Opinion Text Sentiment Analysis

    Mingyong Li, Zheng Jiang*, Zongwei Zhao, Longfei Ma

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2387-2406, 2023, DOI:10.32604/iasc.2023.037900

    Abstract As an essential category of public event management and control, sentiment analysis of online public opinion text plays a vital role in public opinion early warning, network rumor management, and netizens’ personality portraits under massive public opinion data. The traditional sentiment analysis model is not sensitive to the location information of words, it is difficult to solve the problem of polysemy, and the learning representation ability of long and short sentences is very different, which leads to the low accuracy of sentiment classification. This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text based on the pre-training model… More >

Displaying 1-10 on page 1 of 21. Per Page