Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model

    Adel Saad Assiri1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069826 - 10 November 2025

    Abstract Customer churn is the rate at which customers discontinue doing business with a company over a given time period. It is an essential measure for businesses to monitor high churn rates, as they often indicate underlying issues with services, products, or customer experience, resulting in considerable income loss. Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth. Traditional machine learning (ML) models often struggle to capture complex temporal dependencies in client behavior data. To address this, an optimized deep learning (DL) approach using a Regularized Bidirectional Long Short-Term… More >

  • Open Access

    ARTICLE

    A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection

    Zheng Zhang1,2, Jie Hao2, Liquan Chen1,*, Tianhao Hou2, Yanan Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068372 - 10 November 2025

    Abstract With the increasing severity of network security threats, Network Intrusion Detection (NID) has become a key technology to ensure network security. To address the problem of low detection rate of traditional intrusion detection models, this paper proposes a Dual-Attention model for NID, which combines Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to design two modules: the FocusConV and the TempoNet module. The FocusConV module, which automatically adjusts and weights CNN extracted local features, focuses on local features that are more important for intrusion detection. The TempoNet module focuses on global information, identifies… More >

  • Open Access

    ARTICLE

    Multi-Stage Centralized Energy Management for Interconnected Microgrids: Hybrid Forecasting, Climate-Resilient, and Sustainable Optimization

    Mohamed Kouki1, Nahid Osman2, Mona Gafar3, Ragab A. El-Sehiemy4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3783-3811, 2025, DOI:10.32604/cmes.2025.071964 - 23 December 2025

    Abstract The growing integration of nondispatchable renewable energy sources (PV, wind) and the need to cut CO2 emissions make energy management crucial. Microgrids provide a framework for RES integration but face challenges from intermittency, fluctuating loads, cost optimization, and uncertainty in real-time balancing. Accurate short-term forecasting of solar generation and demand is vital for reliable and sustainable operation. While stochastic and machine learning methods are used, they struggle with limited data, complex temporal patterns, and scalability. Key challenges include capturing seasonal to weekly variations and modeling sudden fluctuations in generation and consumption. To address… More >

  • Open Access

    ARTICLE

    Grid-Supplied Load Prediction under Extreme Weather Conditions Based on CNN-BiLSTM-Attention Model with Transfer Learning

    Qingliang Wang1, Chengkai Liu1, Zhaohui Zhou1, Ye Han1, Luebin Fang2, Moxuan Zhao3, Xiao Cao3,*

    Energy Engineering, Vol.122, No.11, pp. 4715-4732, 2025, DOI:10.32604/ee.2025.068105 - 27 October 2025

    Abstract Grid-supplied load is the traditional load minus new energy generation, so grid-supplied load forecasting is challenged by uncertainties associated with the total energy demand and the energy generated off-grid. In addition, with the expansion of the power system and the increase in the frequency of extreme weather events, the difficulty of grid-supplied load forecasting is further exacerbated. Traditional statistical methods struggle to capture the dynamic characteristics of grid-supplied load, especially under extreme weather conditions. This paper proposes a novel grid-supplied load prediction model based on Convolutional Neural Network-Bidirectional LSTM-Attention mechanism (CNN-BiLSTM-Attention). The model utilizes transfer… More >

  • Open Access

    ARTICLE

    Prediction of Landslide Displacement Using a BiLSTM-RBF Model Based on a Hybrid Attention Mechanism

    Jiao Chen1, Xiao Wang1,*, Zhiqin He1, Yi Chen2, Chao Ma1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5423-5450, 2025, DOI:10.32604/cmc.2025.067952 - 23 October 2025

    Abstract This research proposes an innovative solution to the inherent challenges faced by landslide displacement prediction models based on data-driven methods, such as the need for extensive historical datasets for training, the reliance on manual feature selection, and the difficulty in effectively utilizing landslide historical data. We have developed a dual-channel deep learning prediction model that integrates multimodal decomposition and an attention mechanism to overcome these challenges and improve prediction performance. The proposed methodology follows a three-stage framework: (1) Empirical Mode Decomposition (EMD) effectively segregates cumulative displacement and feature factors; (2) We have developed a Double… More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    Anomaly Diagnosis Using Machine Learning Method in Fiber Fault Diagnosis

    Xiaoping Yang1,2,3, Jinku Qiu2,3,4, Xifa Gong5, Jin Ye5, Fei Yao5,*, Jiaqiao Chen6, Xianzan Luo6, Da Qin6

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1515-1539, 2025, DOI:10.32604/cmc.2025.067518 - 29 August 2025

    Abstract In contemporary society, rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks. The emergence of novel faults in optical networks has introduced new challenges, significantly compromising their normal operation. Machine learning has emerged as a highly promising approach. Consequently, it is imperative to develop an automated and reliable algorithm that utilizes telemetry data acquired from Optical Time-Domain Reflectometers (OTDR) to enable real-time fault detection and diagnosis in optical fibers. In this paper, we introduce a multi-scale Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) deep… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method for Photovoltaic Grid-Connected Inverters Based on MPA-VMD-PSO BiLSTM

    Jingxian Ni, Chaomeng Wang, Shiqi Sun, Yuxuan Sun, Gang Ma*

    Energy Engineering, Vol.122, No.9, pp. 3719-3736, 2025, DOI:10.32604/ee.2025.066971 - 26 August 2025

    Abstract To improve the fault diagnosis accuracy of a PV grid-connected inverter, a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed. Firstly, unlike the traditional VMD algorithm which relies on manual experience to set parameters (e.g., noise tolerance, penalty parameter, number of decompositions), this paper achieves adaptive optimization of parameters through MPA algorithm to avoid the problem of feature information loss caused by manual parameter tuning, and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters; and then, adopts the PSO algorithm for the Then, the… More >

  • Open Access

    ARTICLE

    Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts

    Lilia-Eliana Popescu-Apreutesei, Mihai-Sorin Iosupescu, Sabina Cristiana Necula, Vasile-Daniel Păvăloaia*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2605-2644, 2025, DOI:10.32604/cmc.2025.064747 - 03 July 2025

    Abstract The increasing fluency of advanced language models, such as GPT-3.5, GPT-4, and the recently introduced DeepSeek, challenges the ability to distinguish between human-authored and AI-generated academic writing. This situation is raising significant concerns regarding the integrity and authenticity of academic work. In light of the above, the current research evaluates the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) networks enhanced with pre-trained GloVe (Global Vectors for Word Representation) embeddings to detect AI-generated scientific abstracts drawn from the AI-GA (Artificial Intelligence Generated Abstracts) dataset. Two core BiLSTM variants were assessed: a single-layer approach and a dual-layer… More >

Displaying 1-10 on page 1 of 46. Per Page