Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    CF-BFT: A Dual-Mode Byzantine Fault-Tolerant Protocol Based on Node Authentication

    Zhiruo Zhang, Feng Wang*, Yang Liu, Yang Lu, Xinlei Liu

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3113-3129, 2023, DOI:10.32604/cmc.2023.040600

    Abstract The consensus protocol is one of the core technologies in blockchain, which plays a crucial role in ensuring the block generation rate, consistency, and safety of the blockchain system. Blockchain systems mainly adopt the Byzantine Fault Tolerance (BFT) protocol, which often suffers from slow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus. In this paper, this paper proposes a new dual-mode consensus protocol based on node identity authentication. It divides the consensus process into two subprotocols: Check_BFT and Fast_BFT. In Check_BFT, the replicas authenticate the primary’s identity by monitoring… More >

  • Open Access


    Hybrid Smart Contracts for Securing IoMT Data

    D. Palanikkumar1, Adel Fahad Alrasheedi2, P. Parthasarathi3, S. S. Askar2, Mohamed Abouhawwash4,5,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 457-469, 2023, DOI:10.32604/csse.2023.024884

    Abstract Data management becomes essential component of patient healthcare. Internet of Medical Things (IoMT) performs a wireless communication between E-medical applications and human being. Instead of consulting a doctor in the hospital, patients get health related information remotely from the physician. The main issues in the E-Medical application are lack of safety, security and privacy preservation of patient’s health care data. To overcome these issues, this work proposes block chain based IoMT Processed with Hybrid consensus protocol for secured storage. Patients health data is collected from physician, smart devices etc. The main goal is to store More >

  • Open Access


    Distributed Trusted Computing for Blockchain-Based Crowdsourcing

    Yihuai Liang, Yan Li, Byeong-Seok Shin*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2825-2842, 2021, DOI:10.32604/cmc.2021.016682

    Abstract A centralized trusted execution environment (TEE) has been extensively studied to provide secure and trusted computing. However, a TEE might become a throughput bottleneck if it is used to evaluate data quality when collecting large-scale data in a crowdsourcing system. It may also have security problems compromised by attackers. Here, we propose a scheme, named dTEE, for building a platform for providing distributed trusted computing by leveraging TEEs. The platform is used as an infrastructure of trusted computations for blockchain-based crowdsourcing systems, especially to securely evaluate data quality and manage remuneration: these operations are handled… More >

  • Open Access


    Excellent Practical Byzantine Fault Tolerance

    Huanrong Tang, Yaojing Sun, Jianquan Ouyang*

    Journal of Cyber Security, Vol.2, No.4, pp. 167-182, 2020, DOI:10.32604/jcs.2020.011341

    Abstract With the rapid development of blockchain technology, more and more people are paying attention to the consensus mechanism of blockchain. Practical Byzantine Fault Tolerance (PBFT), as the first efficient consensus algorithm solving the Byzantine Generals Problem, plays an important role. But PBFT also has its problems. First, it runs in a completely closed environment, and any node can't join or exit without rebooting the system. Second, the communication complexity in the network is as high as O(n2), which makes the algorithm only applicable to small-scale networks. For these problems, this paper proposes an Optimized consensus… More >

Displaying 1-10 on page 1 of 4. Per Page