Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (134)
  • Open Access

    ARTICLE

    Time-Domain Analysis of Body Freedom Flutter Based on 6DOF Equation

    Zhehan Ji1, Tongqing Guo1,*, Di Zhou1, Zhiliang Lu1, Binbin Lyu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 489-508, 2024, DOI:10.32604/cmes.2023.029088

    Abstract The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes. Particularly, a high-aspect-ratio flexible flying wing is prone to body freedom flutter (BFF), which is a result of coupling of the rigid body short-period mode with 1st wing bending mode. Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law. Instead of using the rigid body mode, this work simulates the rigid body motion of the model by using the six-degree-of-freedom (6DOF)… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Shell-and-Tube Heat Exchanger

    Juanjuan Wang*, Jiangping Nan, Yanan Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2761-2775, 2023, DOI:10.32604/fdmp.2023.021175

    Abstract The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger (STHE). In order to do so, a simulation model is introduced that takes into account the related gas-phase circulation. Then, simulation verification experiments are designed in order to validate the model. The results show that the temperature field undergoes strong variations in time when an inlet wind speed of 6 m/s is considered, while the heat transfer error reaches a minimum of 5.1%. For an inlet velocity of 9 m/s, the heat transfer drops to the lowest point, while the heat transfer error reaches a… More >

  • Open Access

    PROCEEDINGS

    Aeroelastic Stabilities Analysis of a Transonic Fan Rotor NASA Rotor67

    Chunxiu Ji1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010329

    Abstract Blade flutter is a complex phenomenon that can lead to serious damage or failure of turbomachinery systems. Predicting and mitigating blade flutter is therefore an important aspect of the design and analysis of these systems[1]. In this paper, we present a comparative study of two representative methods for blade flutter predictions: the energy method and the computational fluid dynamics/computational structural dynamics (CFD/CSD) coupled time-domain method. The energy method is a decoupled approach that uses a simplified model of the blade and fluid-structure interaction to calculate the stability boundaries of the system[2]. The time-domain method, on the other hand, is a… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF A DOUBLE SKIN WITH SECONDARY VENTILATION FLOW ON ADIABATIC WALL

    M. Bouraouia, M. S. Rouabaha, A. Abidi-Saadb,c,d,*, A. Korichie, C. Popab , G. Polidorib

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.18

    Abstract Study concerning a double skin flow with secondary ventilation was conducted numerically, in order to understand the basic mechanisms of the free convection in an open channel asymmetrically heated with uniform heat flux density (510 W/m2 ). The vertical channel corresponds to a double skin façade, which was immersed in a tank filled with water. The tank corresponds to the environment which allows us to overcome pressure conditions at the inlet and the outlet of the channel. The use of water allows neglecting radiation effect. The mass conservation equations of momentum and energy are solved using the finite volume method… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER AND ENTROPY GENERATION INSIDE 3D TRAPEZOIDAL SOLAR DISTILLER

    Walid Aicha,c, Lioua Kolsia,d,*, Abdelkarim Aydie,f, Abdullah A.A.A Al-Rashedb , Noureddine Ait Messaoudenea , Mohamed Naceur Borjinid

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.8

    Abstract Numerical study of double-diffusive natural convection flow and entropy generation in 3D trapezoidal solar distiller was performed using computational fluid dynamics (CFD). In this research the flow, provoked by the interaction of chemical species diffusions and the thermal energy, is assumed to be laminar. Using potential vector-vorticity formulation in its three-dimensional form, the governing equations are formulated and solved by the numerical methodology based on the finite volume method. The main objective is to analyze the effects of buoyancy ratio for opposed temperature and concentration gradients and to focus the attention on three-dimensional aspects and generated entropy. The occurring heat… More >

  • Open Access

    ARTICLE

    CFD INVESTIGATIONS OF THERMAL AND DYNAMIC BEHAVIORS IN A TUBULAR HEAT EXCHANGER WITH BUTTERFLY BAFFLES

    AlemKarimaa,*, Sahel Djamelb , Nemdili Alic, Ameur Houarid

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.27

    Abstract In the present paper, the effects of a new baffle design on the efficiency of a tubular heat exchanger are numerically investigated. It concerns butterfly baffles inserted in a cylindrical tube heat exchanger. We focus on the influence of the shape of baffles, the space between baffles (pitch ratio, PR) and the baffle size (i.e. the blockage ratio, BR) on the heat transfer and flow characteristics. Three geometrical configurations with different PRs are realized (PR = 1, 2 and 4) and five others with different blockage ratios (BR = 0.1, 0.2, 0.3, 0.4 and 0.5). The investigations are achieved for… More >

  • Open Access

    ARTICLE

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

    Jiuxuan Liu, Yong Zeng*, Xueya Zhao, Hongbo Chen, Bin Yan, Qian Lu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2499-2518, 2023, DOI:10.32604/fdmp.2023.028413

    Abstract

    A method combining computational fluid dynamics (CFD) and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquid film along the surface of a cylindrical workpiece. The numerical method relies on an Eulerian-Eulerian technique. Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquid film and its distribution are determined using various data fitting algorithms. Finally, the reliability of the proposed method is verified by means of experimental tests where the robot posture is changed. The provided correlation are intended… More > Graphic Abstract

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

  • Open Access

    ARTICLE

    EFFECT OF SEMI-CIRCLE RIB ON HEAT TRANSFER COEFFICIENT IN A RECTANGULAR CHANNEL

    Riyadh S. Al-Turaihi a , Doaa Fadhila,b,*, Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.29

    Abstract In this paper an experimental and numerical analysis has been conducted to study the effect of heat transfer and filed flow of two-phase flow (water and air) through a rectangular ribbed channel. The study has involved the several values of heat flux (120,140,160 Watts), air and water superficial velocity (1.096, 1.425, 1.644, 1.864, and 2.193 m/s) and (0.0421, 0.0842, and 0.1474 m/s), respectively. The distribution of temperature along the channel was photographed using thermal camera and compared with numerical results . The experimental test system was fabricated of vertical rectangular channel with cross section of (0.08m × 0.03m) and a… More >

  • Open Access

    ARTICLE

    CFD SIMULATION OF BENZENE ADSORPTION ON PISTACHIO ACTIVATED CARBON POROUS MEDIA

    Maryam Mirzaiea,† , Ali Reza Talebizadeha , Hassan Hashemipoura,b

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.19

    Abstract In this work, a combination of computational fluid dynamics (CFD) and porous media model was applied to simulate the benzene adsorption on activated carbon and the flow fields in a porous media. The three dimensional unsteady state the gas flow was modeled by using the laminar one phase flow equations in conjunction with the mass transfer equation. The adsorption rate on solid phase was implemented to the model by a user defined source. The model was validated by comparing the simulated breakthrough curves by experimental data. After the validation of the model, the effects of the operating conditions such as… More >

  • Open Access

    ARTICLE

    COMPARISON OF CFD AND EMPIRICAL MODELS FOR PREDICTING WALL TEMPERATURE AT SUPERCRITICAL CONDITIONS OF WATER

    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken for comparison. A visual… More >

Displaying 1-10 on page 1 of 134. Per Page