Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,018)
  • Open Access

    ARTICLE

    TeachSecure-CTI: Adaptive Cybersecurity Curriculum Generation Using Threat Dynamics and AI

    Alaa Tolah*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074997 - 10 February 2026

    Abstract The rapidly evolving cybersecurity threat landscape exposes a critical flaw in traditional educational programs where static curricula cannot adapt swiftly to novel attack vectors. This creates a significant gap between theoretical knowledge and the practical defensive capabilities needed in the field. To address this, we propose TeachSecure-CTI, a novel framework for adaptive cybersecurity curriculum generation that integrates real-time Cyber Threat Intelligence (CTI) with AI-driven personalization. Our framework employs a layered architecture featuring a CTI ingestion and clustering module, natural language processing for semantic concept extraction, and a reinforcement learning agent for adaptive content sequencing. By… More >

  • Open Access

    ARTICLE

    A Quantum-Inspired Algorithm for Clustering and Intrusion Detection

    Gang Xu1,2, Lefeng Wang1, Yuwei Huang2, Yong Lu3, Xin Liu4, Weijie Tan5, Zongpeng Li6, Xiu-Bo Chen2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074256 - 10 February 2026

    Abstract The Intrusion Detection System (IDS) is a security mechanism developed to observe network traffic and recognize suspicious or malicious activities. Clustering algorithms are often incorporated into IDS; however, conventional clustering-based methods face notable drawbacks, including poor scalability in handling high-dimensional datasets and a strong dependence of outcomes on initial conditions. To overcome the performance limitations of existing methods, this study proposes a novel quantum-inspired clustering algorithm that relies on a similarity coefficient-based quantum genetic algorithm (SC-QGA) and an improved quantum artificial bee colony algorithm hybrid K-means (IQABC-K). First, the SC-QGA algorithm is constructed based on… More >

  • Open Access

    ARTICLE

    Detection of Maliciously Disseminated Hate Speech in Spanish Using Fine-Tuning and In-Context Learning Techniques with Large Language Models

    Tomás Bernal-Beltrán1, Ronghao Pan1, José Antonio García-Díaz1, María del Pilar Salas-Zárate2, Mario Andrés Paredes-Valverde2, Rafael Valencia-García1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073629 - 10 February 2026

    Abstract The malicious dissemination of hate speech via compromised accounts, automated bot networks and malware-driven social media campaigns has become a growing cybersecurity concern. Automatically detecting such content in Spanish is challenging due to linguistic complexity and the scarcity of annotated resources. In this paper, we compare two predominant AI-based approaches for the forensic detection of malicious hate speech: (1) fine-tuning encoder-only models that have been trained in Spanish and (2) In-Context Learning techniques (Zero- and Few-Shot Learning) with large-scale language models. Our approach goes beyond binary classification, proposing a comprehensive, multidimensional evaluation that labels each… More >

  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073342 - 10 February 2026

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    REVIEW

    Sensor Fusion Models in Autonomous Systems: A Review

    Sangeeta Mittal1, Chetna Gupta1, Varun Gupta2,3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071599 - 10 February 2026

    Abstract This survey presents a comprehensive examination of sensor fusion research spanning four decades, tracing the methodological evolution, application domains, and alignment with classical hierarchical models. Building on this long-term trajectory, the foundational approaches such as probabilistic inference, early neural networks, rule-based methods, and feature-level fusion established the principles of uncertainty handling and multi-sensor integration in the 1990s. The fusion methods of 2000s marked the consolidation of these ideas through advanced Kalman and particle filtering, Bayesian–Dempster–Shafer hybrids, distributed consensus algorithms, and machine learning ensembles for more robust and domain-specific implementations. From 2011 to 2020, the widespread… More >

  • Open Access

    ARTICLE

    Syntactic and Socially Responsible Machine Translation: A POS and DEP Integrated Framework for English–Tamil

    Rama Sugavanam*, Mythili Ramu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.071469 - 10 February 2026

    Abstract When performing English-to-Tamil Neural Machine Translation (NMT), end users face several challenges due to Tamil’s rich morphology, free word order, and limited annotated corpora. Although available transformer-based models offer strong baselines, they compromise syntactic awareness and the detection and management of offensive content in cluttered, noisy, and informal text. In this paper, we present POSDEP-Offense-Trans, a multi-task NMT framework that combines Part-of-Speech (POS) and Dependency Parsing (DEP) methods with a robust offensive language classification module. Our architecture enriches the Transformer encoder with syntax-aware embeddings and provides syntax-guided attention mechanisms. The architecture incorporates a structure-aware contrastive… More >

  • Open Access

    ARTICLE

    Biostimulatory Influence of Commercial Seaweed Extract on Seed Emergence, Seedling Growth, and Vigor of Winter Rice

    Zakia Akter1, Sumona Akter Jannat2, Sheikh Md. Shibly1, Afroza Sultana1, Amdadul Hoque Amran1, Joairia Hossain Faria1, Sabina Yeasmin1, Md. Parvez Anwar1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.075524 - 30 January 2026

    Abstract Seaweed extract contains plant growth regulators and bio-stimulants that enhance plant growth and development. In Bangladesh, winter rice (Boro rice) in the nursery bed often shows poor seed emergence and weak seedling growth due to low temperature. This problem can be addressed by using seaweed extract as a seed priming agent and bio-stimulant. The objective of this study was to evaluate the effectiveness of seaweed extract (Crop Plus) on seed emergence, seedling growth, and vigor of winter rice in the nursery. Two experiments were conducted at Bangladesh Agricultural University using BRRI dhan89. The laboratory experiment… More >

  • Open Access

    ARTICLE

    Two Eras of Despair: A Long-Term Trend Analysis of Deaths of Despair in Central and Eastern Europe and Central Asia

    Eun Hae Lee1,2,3, Minjae Choi4,5, Hanul Park3,6, Joon Hee Han3,6,7, Sujeong Yu3,8, Joshua Kirabo Sempungu1,2,3,6, Inbae Sohn4,6, Yo Han Lee3,6,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073735 - 28 January 2026

    Abstract Background: That Central and Eastern Europe and Central Asia (CEECA) experienced a major mortality crisis in the 1990s is a well-established finding, with most analyses focusing on singular causes like alcohol-related deaths. However, the utility of the integrated “deaths of despair” framework, which views alcohol, drug, and suicide deaths as a unified socio-economic phenomenon, remains under-explored in this context. Crucially, the long-term evolution of the composition of despair within the region remains a largely unexplored area of inquiry. Therefore, this study aims to analyze the long-term trends, changing composition, and regional heterogeneity of deaths from despair… More >

  • Open Access

    ARTICLE

    Exploring the Associations between Sedentary Time, Social Support, Social Rejection and Psychological Distress: A Network Analysis in Students

    Yuyang Nie1,2,#, Kunkun Jiang2,3,#, Tianci Wang4, Cong Liu1,2, Kangli Du1,2, Yuxian Cao2, Guofeng Qu2,*, Lijia Hou2,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073592 - 28 January 2026

    Abstract Background: Amid the global rise in adolescent sedentary behavior and psychological distress, extant research has largely focused on variable-level associations, neglecting symptom-level interactions. This study applies network analysis, aims to delineate the interconnections among sedentary time, social support, social exclusion, and psychological distress in Chinese students, and to identify core and bridge symptoms to inform targeted interventions. Methods: This study employed a cross-sectional design to investigate the complex relationships among sedentary behavior, social support, social exclusion, and psychological distress among Chinese students. The research involved 459 high school and university students, using network analysis and mediation… More >

  • Open Access

    ARTICLE

    The Connection Paradox: How Social Support Facilitates Short Video Addiction and Solitary Well-Being among Older Adults in China

    Yue Cui1, Ziqing Yang2, Hao Gao1,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.072986 - 28 January 2026

    Abstract Background: In the Chinese context, the impact of short video applications on the psychological well-being of older adults is contested. While often examined through a pathological lens of addiction, this perspective may overlook paradoxical, context-dependent positive outcomes. Therefore, the main objective of this study is to challenge the traditional Compensatory Internet Use Theory by proposing and testing a chained mediation model that explores a paradoxical pathway from social support to life satisfaction via problematic social media use. Methods: Data were collected between July and August 2025 via the Credamo online survey platform, yielding 384 valid responses… More >

Displaying 1-10 on page 1 of 2018. Per Page