Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Research on Damage Identification of Cable-Stayed Bridges Based on Modal Fingerprint Data Fusion

    Yue Cao1,2, Longsheng Bao1, Xiaowei Zhang1,*, Zhanfei Wang1, Bingqian Li1

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 485-503, 2024, DOI:10.32604/sdhm.2024.049698 - 05 June 2024

    Abstract This study addresses the issue of inaccurate single damage fingerprint recognition during the process of bridge damage identification. To improve accuracy, the proposed approach involves fusing displacement mode difference and curvature mode difference data for single damage identification, and curvature mode difference and displacement mode wavelet coefficient difference data for two damage identification. The methodology begins by establishing a finite element model of the cable-stayed bridge and obtaining the original damage fingerprints, displacement modes, curvature modes, and wavelet coefficient differences of displacement modes through modal analysis. A fusion program based on the D-S evidence theory… More > Graphic Abstract

    Research on Damage Identification of Cable-Stayed Bridges Based on Modal Fingerprint Data Fusion

  • Open Access

    ARTICLE

    Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction

    Kexin Zhang, Xinyuan Shen, Longsheng Bao, He Liu*

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 131-158, 2023, DOI:10.32604/sdhm.2023.023431 - 09 May 2023

    Abstract In this paper, the construction process of a cable-stayed bridge with corrugated steel webs was monitored. Moreover, the end performance of the bridge was verified by load test. Owing to the consideration of the bridge structure safety, it is necessary to monitor the main girder deflection, stress, construction error and safety state during construction. Furthermore, to verify whether the bridge can meet the design requirements, the static and dynamic load tests are carried out after the completion of the bridge. The results of construction monitoring show that the stress state of the structure during construction… More >

  • Open Access

    ARTICLE

    A method for the robustness evaluation of cable-stayed bridges with steel truss girders under different reinforcement cases

    Xiaobo Zheng1,2, Zuolong Luo3,*, Yongfei Zhang1,2, Shichao Wang1,2, Leping Ren4

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.38, No.1, pp. 1-19, 2022, DOI:10.23967/j.rimni.2022.03.009 - 16 March 2022

    Abstract Structural robustness, an index for structural geometrical agreement, is used to assess the alternative load paths of structures subjected to loads. Therefore, robustness can be extended to evaluate the robustness of bridges with local failure in individual members. In this work, a method that includes the use of a radar chart is proposed to assess the robustness of cable-stayed bridges by considering the mechanical performance of bridges with local failure in the cables and chords. Four plans regarding the truss girder and cables are designed to reinforce a damaged bridge. The results indicate that these… More >

  • Open Access

    ARTICLE

    Health Monitoring-Based Assessment of Reinforcement with Prestressed Steel Strand for Cable-Stayed Bridge

    Kexin Zhang*, Tianyu Qi, Dachao Li, Xingwei Xue, Yanfeng Li

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 53-80, 2022, DOI:10.32604/sdhm.2021.016130 - 11 February 2022

    Abstract This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands. To verify the effectiveness of external prestressed strand reinforcement method. Static load tests and health monitoring-based assessment were carried out before and after reinforcement. Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20% after reinforcement, and the flexural strength and stiffness of the strengthened beam are improved. The deflection and strain data of health monitoring of the specified section are collected. The deflection of the second span is More >

Displaying 1-10 on page 1 of 4. Per Page