Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques

    Rabar H. Faraj1,*, Hemn Unis Ahmed2,3, Hardi Saadullah Fathullah4, Alan Saeed Abdulrahman2, Farid Abed5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2925-2954, 2024, DOI:10.32604/cmes.2023.029392

    Abstract Plain concrete is strong in compression but brittle in tension, having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures, even when steel reinforcing is present. In order to address these challenges, short polymer fibers are randomly dispersed in a cement-based matrix to form a highly ductile engineered cementitious composite (ECC). This material exhibits high ductility under tensile forces, with its tensile strain being several hundred times greater than conventional concrete. Since concrete is inherently weak in tension, the tensile strain capacity (TSC) has become one of the most extensively researched properties. As a… More >

  • Open Access


    Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission

    Wenfeng Hao1,*, Hao Hao2, Humaira Kanwal2, Shiping Jiang2,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1687-1697, 2023, DOI:10.32604/jrm.2022.023795

    Abstract Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cement-based composites. The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology. This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission (AE) parameters, which provides a reference for the evaluation of microcapsule self-healing technology. Firstly, a kind of self-healing microcapsules were prepared, and the microcapsules were added into the cement-based composites to prepare the compression samples. Then, the specimen with certain pre damage was obtained by… More >

  • Open Access


    Tensile Behavior of Strain Hardening Cementitious Composites (SHCC) Containing Reactive Recycled Powder from Various C&D Waste

    Ruixue Wu1, Tiejun Zhao1, Peng Zhang1, Dingyi Yang2, Miao Liu2, Zhiming Ma2,*

    Journal of Renewable Materials, Vol.9, No.4, pp. 743-765, 2021, DOI:10.32604/jrm.2021.013669


    This work investigates the feasibility of utilizing reactive recycled powder (RP) from construction and demolition (C&D) waste as supplementary cementitious material (SCM) to achieve a ductile strain hardening cementitious composites (SHCC). The recycled mortar powder (RMP) from mortar waste, recycled concrete powder (RCP) from concrete waste and recycled brick powder (RBP) from clay brick waste were first prepared, and the micro-properties and tensile behavior of SHCC containing various types and replacement ratios of RPs were determined. The incorporated RP promotes pozzolanic and filler effects, while the hydration products in cementitious materials decrease with RP incorporation; therefore, the incorporated RP decreases… More >

  • Open Access


    Study of the Superficial Modification of Sisal Fibres with Lignin, and Its Use As a Reinforcement Agent in Cementitious Composites

    Plínio B. Mundim1, Rondinele A. R. Ferreira1, Leila A. C. Motta1, Mariana A. Henrique2, Daniel Pasquini2,*

    Journal of Renewable Materials, Vol.8, No.8, pp. 891-903, 2020, DOI:10.32604/jrm.2020.010655

    Abstract The objective of this work was to evaluate different superficial treatments of sisal fibres employing lignin, and their use as a reinforcement agent in cementitious composites. The treatments consisted of superficially impregnating sisal fibres (S) with organosolv lignin (LO), organosolv lignin and glutaraldehyde (LOG), Kraft lignin (LK) and Kraft lignin and glutaraldehyde (LKG). The fibre modifications were verified by FTIR-ATR and SEM analyzes, and the presence of lignin on the surface of the fibres was evidenced, confirming the effectiveness of the treatments. The mechanical, thermal (by TGA) and water absorption properties of the fibres before and after the modifications were… More >

  • Open Access


    Fracture simulation with coupling moisture diffusion effect and external loading in fiber reinforced cementitious composites

    Kunhwi Kim, Jong Min Park, John E. Bolander, Yun Mook Lim1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 5-6, 2009, DOI:10.3970/icces.2009.012.005

    Abstract Fiber reinforced cementitious composites (FRCC) are the most recently used materials in the civil engineering field due to their mechanical advantages over the cementitious materials. While, the durability performance of cement-based composites can affect the service life of the structural component or system. Sometimes, incompatible behaviors (e.g. thermal expansion, moisture diffusion) among components cause micro-cracking and further durability problems. Physical experimentations have generally been used for understanding the durability of cementitious composites, but increasingly computational simulations are being used to gain new insights. However, the most of existing simulation models are limited in coupling with micro-cracking due to moisture diffusion… More >

Displaying 1-10 on page 1 of 5. Per Page