Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ABSTRACT

    Residual Stress Measurement of Thermal Barrier Coatings

    Jianguo Zhu, Huimin Xie, Fulong Dai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.1, pp. 3-4, 2011, DOI:10.3970/icces.2011.017.003

    Abstract Thermal barrier coatings (TBCs) are widely used in turbines for propulsion and power generation. During build up the coatings, the continuity of the strain at the interface results in the residual stress because of the thermal expansion misfit. Since the formation of residual stresses cannot be avoided, they have to be optimized by adaptation of the process parameters during coating manufacturing. Therefore, in order to obtain information about the characterization of residual stresses for specific process conditions, the development of residual stress measurement is of vital importance.

    In this paper, several techniques on residual stress More >

  • Open Access

    ARTICLE

    Experimental Study of Shot Peening Followed by Cold Spray Coating on Residual Stresses of the Treated Parts

    R. Ghelichi1, S. Bagherifard1, I. Fernandez Parienete2, M.Guagliano1,3, Simone Vezzù4

    Structural Durability & Health Monitoring, Vol.6, No.1, pp. 17-30, 2010, DOI:10.3970/sdhm.2010.006.017

    Abstract Coating deposition processes such as cold spraying are commonly employed to increase wear and fatigue resistance and consequently to enhance longevity of engineering components. Such processes typically introduce residual stresses into the coated surface, which in turn affect efficiency of coatings and play an important role in coating durability. In fact residual stresses are the key parameter to obtain compact and well-adherent coatings. They can modify several coating properties such as adhesion, structure, toughness, hardness reflecting on the macroscopic chemical and mechanical behavior of the coating.
    Present study describes alteration of residual stress state of two More >

  • Open Access

    ARTICLE

    Effects of TGO Roughness on Indentation Response of Thermal Barrier Coatings

    Taotao Hu1, gping Shen1,2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 41-58, 2010, DOI:10.3970/cmc.2010.017.041

    Abstract In this paper, an axisymmetric indentation model is set up to calculate the effects of the roughness of the thermally grown oxide (TGO) layer, which was modeled as a sinusoidal wave, on the indentation response of the thermal barrier coatings. It is found that the amplitude, wavelength, and thickness of the thermally grown oxide layer have obvious influences on the indentation response, while the effect of the indenter position can be neglected. In the top coating layer, residual stress mainly occurs below the indenter and around the nearest two peaks of the thermally grown oxide More >

  • Open Access

    ARTICLE

    The Stress Analysis of Thin Contact Layers: a Viscoelastic Case

    C. Y. Chen1, C. Atkinson2

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 219-240, 2009, DOI:10.3970/cmes.2009.048.219

    Abstract In this paper, we extend our previous analysis of a contact problem with a circular indenter pressed normally against a semi-infinite elastic composite to that of a semi-infinite viscoelastic composite which consists of a contact layer with uniform thickness welded together with another dissimilar medium. Using the correspondence principle between the Laplace transformed elastic equations and the viscoelastic ones, the asymptotic results derived previously for the pure elastic case are readily adopted for the viscoelastic one with the elastic constants replaced by appropriate functions of Laplace transformed variables for the linear viscoelastic solid. We focus More >

  • Open Access

    ABSTRACT

    Coupling Atomistic and Continuum Finite Element Models: Multi-Scale Simulations of Nanotribological Contacts of Nanometer Scale Coatings

    Baolin Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.2, pp. 81-84, 2008, DOI:10.3970/icces.2008.008.081

    Abstract When the size of a physical system is smaller than its characteristic dimensions, the macroscopic viewpoint may not be applicable. In addition, experiments at micro/nanometer scale are difficult and the analysis of nano-experimental data is far from simple. This is mostly due to the lack of effective models that are able to study the structural characteristics and mechanics behavior of the micro/nanometer physical systems. Atomic simulation simulation has been used extensively in the investigation of nanoscale phenomena. However, the size limit of atomic simulation is far short to reach the macroscale because of the limitation More >

  • Open Access

    ABSTRACT

    The Tribological and Fatigue Properties of Steel modified by Hybrid Surface Modification combining Super Rapid Induction Heating & Quenching and DLC coating

    T. Aizawa1, H. Akebono2, H.Suzuki1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.4, pp. 193-198, 2008, DOI:10.3970/icces.2008.005.193

    Abstract In order to achieve power transmission parts like a compact gearwheel which indicates high performance properties, hybrid surface modification was performed by combining Super Rapid Induction Heating & Quenching(SRIQ) which creates high fatigue strength and Diamond Like Carbon (DLC) coating which are well known for their high hardness, low friction and excellent wear resistance. And, in order to prevent the base material from decreasing its fatigue strength, DLC was coated by using Unbalanced Magnetron Sputtering (UBMS) method which can coat at low temperature. Rotational bending fatigue tests and friction-wear tests were carried out. It was More >

  • Open Access

    ARTICLE

    Transient Coupled Thermoelastic Contact Problems Incorporating Thermal Resistance: a BEM Approach

    L.K. Keppas1, G.I. Giannopoulos1, N.K. Anifantis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 181-196, 2008, DOI:10.3970/cmes.2008.025.181

    Abstract In the present paper a boundary element procedure is formulated to treat two-dimensional time dependent thermo-elastic contact problems incorporating thermal resistance along the contacting surfaces. The existence of pressure-dependent thermal contact leads to coupling of temperature and stress fields. Therefore, the inherent non-linearity of the problem demands simultaneous treating of both thermal and mechanical boundary integral equations while iterative procedures are introduced to ensure equilibrium of mechanical and thermal contact conditions at each step of the process. The transient behavior of interfacial cracks in bimaterial solids when undergo thermal shock in the presence of partial More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Particle Motion in Plasma Arc Welding

    Adeline Tchikango Siagam1, Gunther Brenner1, Peter Giese2, Volker Wesling2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 77-84, 2008, DOI:10.3970/fdmp.2008.004.077

    Abstract The PTA (''Plasma-Transferred-Arc'') is a widespread variant of plasma powder processes to manufacture coatings against corrosion or abrasion. For the optimization of this technique, an explanation of the processes which lead to a maximal deposition performance (i.e. maximal quantity of powder converted per time) is required. Especially the gas and particle flow in the region between the burner nozzle and the work piece is of interest. In the present study, flow simulations (Computational Fluid Dynamics, CFD) have been done in order to investigate the determining factors for the dimensioning of the processes. Additionally, velocity measurements… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Fatigue Behaviour of Notched PVD-coated Ti-6Al-4V

    S. Baragetti1, F. Tordini2

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 165-176, 2007, DOI:10.3970/sdhm.2007.003.165

    Abstract The effect of a TiN PVD (Physical Vapor Deposition) coating on the fatigue behaviour of the titanium alloy Ti-6Al-4V was investigated. Fatigue tests were performed on coated and uncoated, both smooth and 120° V-notched, specimens in order to evaluate the influence of the coating on the substrate fatigue resistance. Numerical analyses were carried out in order to determine the stress distributions below the specimen surface and on the coating. Several coating elastic moduli were used in such calculations. The residual stress gradient induced by the coating process deposition and the substrate plasticization were also taken More >

  • Open Access

    ARTICLE

    Modeling a Discontinuous CVD Coating Process: II. Detailed Simulation Results

    Joseph G. Lawrence, John P. Dismukes, Arunan Nadarajah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 255-264, 2007, DOI:10.3970/fdmp.2007.003.255

    Abstract The atmospheric chemical vapor deposition process on continuous glass sheets is a well developed one and the parameters that affect it are relatively well understood. When this process is converted to coat discrete glass plates it introduces a new variable, the gap between the glass plates, which can significantly impact the quality of the coatings. In this study a 2D pseudo steady state model of the process was developed to study the effect of the gap, and the ratio of outlet to inlet gas flow rates (called the bias), on the coating quality. The model… More >

Displaying 61-70 on page 7 of 75. Per Page