Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (216)
  • Open Access


    Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm

    Heng Zhang1,2, Chao Su2,*, Zhizhong Song1, Zhenzhong Shen1,2, Huiguang Lei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 813-826, 2024, DOI:10.32604/cmes.2023.030055

    Abstract Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering. One such equation is the Fourier equation, which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete. One important measure for temperature control in mass concrete is the use of cooling water pipes. However, the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method. Moreover, the temperature of the water in the cooling pipe needs to… More >

  • Open Access


    Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory

    Zhongguo Tang1, Haijin Zhuo1, Beian Li1, Xiaotao Ma2, Siyu Zhao2, Kai Tong2,*

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 407-431, 2023, DOI:10.32604/sdhm.2023.026033

    Abstract Corrosion can be very harmful to the service life and several properties of reinforced concrete structures. The metal magnetic memory (MMM) method, as a newly developed spontaneous magnetic flux leakage (SMFL) non-destructive testing (NDT) technique, is considered a potentially viable method for detecting corrosion damage in reinforced concrete members. To this end, in this paper, the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters, and the normal components BBz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory (MMM) method.… More >

  • Open Access


    A Coupled Hygro-Thermo-Mechanical Bond-Based Cosserat Peridynamic Porous Media Model for Heated Fracture of Concrete

    Jiaming Zhang1, Xihua Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09055

    Abstract This paper presents a fully coupled hygro-thermo-mechanical bond-based Cosserat peridynamic porous media model for concrete at high temperature [1-3]. The model enables the problem of Poisson's ratio limitation to be relieved and the effect of cement particle size and its independent micro-rotation to be taken into account [4]. A multi-rate explicit integration strategy is proposed, which allows this complex multi-field fully coupled governing equation to be well solved. Numerical simulations mainly focus on the terms of temperature, water vapour pressure and damage level to verify the validity of the model [5-9]. And they additionally demonstrate the effect of cement particle… More >

  • Open Access


    Study on Crack Propagation Behavior of Concrete with Water Fracture Interactions

    Wenhu Zhao1,2,*, Chengbin Du2, Xiaocui Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010048

    Abstract Concrete structures such as offshore platforms, costal and port structures, dams, etc., are often submerged in water [1]. The water within concreter pores or cracks has a great influence on crack propagation behavior [2,3]. Several wedge-splitting experiments of compact specimens are conducted with a designed sealing device to study the water effects on concrete crack propagation. Different water pressures and different loading rates are considered loading on the pre-crack surfaces and waterproof strain gauges are stuck along the crack path to observe the fracture process during the experiments. Water pressure values on crack surfaces are recorded by diffused silicon water… More >

  • Open Access


    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

    Liang Wen1,2,*, Changhong Yan3, Yehui Shi4, Zhenxiang Wang4, Gang Liu4, Wei Shi4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3681-3692, 2023, DOI:10.32604/jrm.2023.027671

    Abstract The treatment of wheat straw is very difficult, and its utilization rate is very low; accumulation causes air pollution and even fire. To make full use of wheat straw resources, we examined how using different physical and chemical methods to treat the wheat straw which can improve its strength abilities, or enhance the activity of wheat straw ash. In terms of concrete additives, it can reduce the amount of cement used. In this paper, we found that alkali treatment can significantly improve the tensile strength of wheat straw fiber, but polyvinyl alcohol treatment has no obvious effect on the strength… More > Graphic Abstract

    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

  • Open Access


    Effect of CSH Crystal Nucleus on Steam-Free Cured Fly Ash Precast Concrete Components

    Ruyi Luo, Yanyan Hu*, Tingshu He*, Xiaodong Ma, Yongdong Xu

    Journal of Renewable Materials, Vol.11, No.9, pp. 3485-3500, 2023, DOI:10.32604/jrm.2023.027592

    Abstract The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete. Based on this, the new nanomaterial CSH-the hydration product of cement effectively solves these measures’ disadvantages, such as excessive energy consumption, thermal stress damage, and the introduction of external ions. In this paper, the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time, workability, and mechanical properties and analyzed at the microscopic level using hydration temperature, XRD, and SEM. The results… More >

  • Open Access


    Determination of Reflected Temperature in Active Thermography Measurements for Corrosion Quantification of Reinforced Concrete Elements

    Suyadi Kartorono*, Herlien Dwiarti Setio, Adang Surahman, Ediansjah Zulkifli

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 195-208, 2023, DOI:10.32604/sdhm.2022.023259

    Abstract This paper sums up the determining analysis of the measuring location of Trefl using a thermocouple during the thermography tests. Laboratory temperature distribution testing methods, analysis of value and location of Trefl measurement are explained in this paper. The heat source is two halogen lamps of 500 watts each fitted at a distance of 30–50 cm. Noises appearing during testing of thermography are corrected with measured Trefl value. The results of thermogram correction of corroded concrete surfaces using Trefl values are displayed in this paper too. The concrete surface temperature results of quantitative image processing method are compared to the… More >

  • Open Access


    Numerical Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency of Reinforced Concrete Structures

    Amthal Hakim1, Wael Slika1,*, Rawan Machmouchi1, Adel Elkordi2

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 175-194, 2023, DOI:10.32604/sdhm.2022.023027

    Abstract Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects. It may lead to spalling of concrete cover, reduction of section’s capacity and can alter the dynamic properties. For the dynamic properties, natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment. Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs, few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques. This can be attributed to the limited available data, the complex… More >

  • Open Access


    Research Progress on the Influence of Varying Fiber Contents on Mechanical Properties of Recycled Concrete

    Zhenqing Shi1, Guomin Sun1, Jianyong Pang2,*

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 239-255, 2023, DOI:10.32604/sdhm.2023.022816

    Abstract Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements. However, the mechanical properties of recycled concrete are not as good as those of ordinary concrete. To enhance the former’s performance and increase its popularity and application in engineering fields, notable advances have been made by using steel, synthetic, plant, and mineral fiber materials. These materials are added to recycled concrete to improve its mechanical properties. Studies have shown that (1) steel fibers have a distinct reinforcing effect and improve the strength, toughness, and… More >

  • Open Access


    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and 50 freeze-thaw cycles. The damage… More >

Displaying 1-10 on page 1 of 216. Per Page