Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (435)
  • Open Access

    ARTICLE

    SlowFast Based Real-Time Human Motion Recognition with Action Localization

    Gyu-Il Kim1, Hyun Yoo2, Kyungyong Chung3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2135-2152, 2023, DOI:10.32604/csse.2023.041030

    Abstract Artificial intelligence is increasingly being applied in the field of video analysis, particularly in the area of public safety where video surveillance equipment such as closed-circuit television (CCTV) is used and automated analysis of video information is required. However, various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging. Video analysis technology applies object classification, detection, and relationship analysis to continuous 2D frame data, and the various meanings within the video are thus analyzed based on the extracted basic data. Motion recognition is key in this analysis. Motion recognition is a challenging… More >

  • Open Access

    ARTICLE

    Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2119-2134, 2023, DOI:10.32604/csse.2023.040620

    Abstract Kidney infection is a severe medical issue affecting individuals worldwide and increasing mortality rates. Chronic Kidney Disease (CKD) is treatable during its initial phases but can become irreversible and cause renal failure. Among the various diseases, the most prevalent kidney conditions affecting kidney function are cyst growth, kidney tumors, and nephrolithiasis. The significant challenge for the medical community is the immediate diagnosis and treatment of kidney disease. Kidney failure could result from kidney disorders like tumors, stones, and cysts if not often identified and addressed. Computer-assisted diagnostics are necessary to support clinicians’ and specialists’ medical assessments due to the rising… More >

  • Open Access

    ARTICLE

    A Triplet-Branch Convolutional Neural Network for Part-Based Gait Recognition

    Sang-Soo Yeo1, Seungmin Rho2,*, Hyungjoon Kim3, Jibran Safdar4, Umar Zia5, Mehr Yahya Durrani5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2027-2047, 2023, DOI:10.32604/csse.2023.040327

    Abstract Intelligent vision-based surveillance systems are designed to deal with the gigantic volume of videos captured in a particular environment to perform the interpretation of scenes in form of detection, tracking, monitoring, behavioral analysis, and retrievals. In addition to that, another evolving way of surveillance systems in a particular environment is human gait-based surveillance. In the existing research, several methodological frameworks are designed to use deep learning and traditional methods, nevertheless, the accuracies of these methods drop substantially when they are subjected to covariate conditions. These covariate variables disrupt the gait features and hence the recognition of subjects becomes difficult. To… More >

  • Open Access

    ARTICLE

    MSF-Net: A Multilevel Spatiotemporal Feature Fusion Network Combines Attention for Action Recognition

    Mengmeng Yan1, Chuang Zhang1,2,*, Jinqi Chu1, Haichao Zhang1, Tao Ge1, Suting Chen1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1433-1449, 2023, DOI:10.32604/csse.2023.040132

    Abstract An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction, information redundancy, and insufficient extraction of frequency domain information in channels in 3D convolutional neural networks. Firstly, based on 3D CNN, this paper designs a new multilevel spatiotemporal feature fusion (MSF) structure, which is embedded in the network model, mainly through multilevel spatiotemporal feature separation, splicing and fusion, to achieve the fusion of spatial perceptual fields and short-medium-long time series information at different scales with reduced network parameters; In the second step,… More >

  • Open Access

    ARTICLE

    3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution

    Mohd Anul Haq1,*, Siwar Ben Hadj Hassine2, Sharaf J. Malebary3, Hakeem A. Othman4, Elsayed M. Tag-Eldin5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2689-2705, 2023, DOI:10.32604/csse.2023.039904

    Abstract Hyperspectral images can easily discriminate different materials due to their fine spectral resolution. However, obtaining a hyperspectral image (HSI) with a high spatial resolution is still a challenge as we are limited by the high computing requirements. The spatial resolution of HSI can be enhanced by utilizing Deep Learning (DL) based Super-resolution (SR). A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI, without losing the spectral content. The 3D-CNNHSR model was tested for the Hyperion HSI. The pre-processing of the HSI was done before applying the SR model so that the full advantage of… More >

  • Open Access

    ARTICLE

    Artificial Humming Bird Optimization with Siamese Convolutional Neural Network Based Fruit Classification Model

    T. Satyanarayana Murthy1, Kollati Vijaya Kumar2, Fayadh Alenezi3, E. Laxmi Lydia4, Gi-Cheon Park5, Hyoung-Kyu Song6, Gyanendra Prasad Joshi7, Hyeonjoon Moon7,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1633-1650, 2023, DOI:10.32604/csse.2023.034769

    Abstract Fruit classification utilizing a deep convolutional neural network (CNN) is the most promising application in personal computer vision (CV). Profound learning-related characterization made it possible to recognize fruits from pictures. But, due to the similarity and complexity, fruit recognition becomes an issue for the stacked fruits on a weighing scale. Recently, Machine Learning (ML) methods have been used in fruit farming and agriculture and brought great convenience to human life. An automated system related to ML could perform the fruit classifier and sorting tasks previously managed by human experts. CNN’s (convolutional neural networks) have attained incredible outcomes in image classifiers… More >

  • Open Access

    ARTICLE

    Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT

    Di Wang, Bingcai Wei, Liye Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1989-2000, 2023, DOI:10.32604/cmes.2023.028529

    Abstract Extracting useful details from images is essential for the Internet of Things project. However, in real life, various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion, resulting in difficulties and obstacles to the extraction of key information, affecting the judgment of the real situation in the process of the Internet of Things, and causing system decision-making errors and accidents. In this paper, we mainly solve the problem of rain on the image occlusion, remove the rain grain in the image, and get a clear image without rain. Therefore, the single image deraining algorithm… More >

  • Open Access

    ARTICLE

    TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

    Peng Geng1, Ji Lu1, Ying Zhang2,*, Simin Ma1, Zhanzhong Tang2, Jianhua Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2001-2023, 2023, DOI:10.32604/cmes.2023.027127

    Abstract In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training. To solve these problems, a dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose depth-wise convolutions can provide position information is… More >

  • Open Access

    ARTICLE

    A Consistent Mistake in Remote Sensing Images’ Classification Literature

    Huaxiang Song*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1381-1398, 2023, DOI:10.32604/iasc.2023.039315

    Abstract Recently, the convolutional neural network (CNN) has been dominant in studies on interpreting remote sensing images (RSI). However, it appears that training optimization strategies have received less attention in relevant research. To evaluate this problem, the author proposes a novel algorithm named the Fast Training CNN (FST-CNN). To verify the algorithm’s effectiveness, twenty methods, including six classic models and thirty architectures from previous studies, are included in a performance comparison. The overall accuracy (OA) trained by the FST-CNN algorithm on the same model architecture and dataset is treated as an evaluation baseline. Results show that there is a maximal OA… More >

  • Open Access

    ARTICLE

    Real-Time CNN-Based Driver Distraction & Drowsiness Detection System

    Abdulwahab Ali Almazroi1,*, Mohammed A. Alqarni2, Nida Aslam3, Rizwan Ali Shah4

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2153-2174, 2023, DOI:10.32604/iasc.2023.039732

    Abstract Nowadays days, the chief grounds of automobile accidents are driver fatigue and distractions. With the development of computer vision technology, a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them, reducing accidents. This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle. Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network (CNN) any changes by focusing on the eyes and mouth zone, precision is achieved. One of the… More >

Displaying 11-20 on page 2 of 435. Per Page