Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    The Estimation of the Higher Heating Value of Biochar by Data-Driven Modeling

    Jiefeng Chen1, Lisha Ding1, Pengyu Wang1, Weijin Zhang2, Jie Li3, Badr A. Mohamed4, Jie Chen1, Songqi Leng1, Tonggui Liu1, Lijian Leng2,*, Wenguang Zhou1,*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1555-1574, 2022, DOI:10.32604/jrm.2022.018625

    Abstract Biomass is a carbon-neutral renewable energy resource. Biochar produced from biomass pyrolysis exhibits preferable characteristics and potential for fossil fuel substitution. For time- and cost-saving, it is vital to establish predictive models to predict biochar properties. However, limited studies focused on the accurate prediction of HHV of biochar by using proximate and ultimate analysis results of various biochar. Therefore, the multi-linear regression (MLR) and the machine learning (ML) models were developed to predict the measured HHV of biochar from the experiment data of this study. In detail, 52 types of biochars were produced by pyrolysis from rice straw, pig manure,… More >

  • Open Access

    ARTICLE

    A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network

    Kyungsuk Jang1, Gun Jin Yun2,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1091-1120, 2021, DOI:10.32604/cmc.2020.012911

    Abstract This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests. Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation. The proposed method can overcome such practical challenges. The methodology is formalized by combining four ideas: 1) The deep learning neural network (DLNN)-based material constitutive model, 2) Self-learning inverse finite element (SELIFE) simulation, 3) Algorithmic identification of failure points from the self-learned stress-strain curves and 4) Derivation of the failure criteria through symbolic regression of the genetic programming. Stress… More >

Displaying 1-10 on page 1 of 2. Per Page