Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    Addressing Imbalance in Health Datasets: A New Method NR-Clustering SMOTE and Distance Metric Modification

    Hairani Hairani1,2, Triyanna Widiyaningtyas1,*, Didik Dwi Prasetya1, Afrig Aminuddin3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2931-2949, 2025, DOI:10.32604/cmc.2024.060837 - 17 February 2025

    Abstract An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of… More >

  • Open Access

    ARTICLE

    A Study on Polyp Dataset Expansion Algorithm Based on Improved Pix2Pix

    Ziji Xiao1, Kaibo Yang1, Mingen Zhong1,*, Kang Fan2, Jiawei Tan2, Zhiying Deng1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2665-2686, 2025, DOI:10.32604/cmc.2024.058345 - 17 February 2025

    Abstract The polyp dataset involves the confidentiality of medical records, so it might be difficult to obtain datasets with accurate annotations. This problem can be effectively solved by expanding the polyp data set with algorithms. The traditional polyp dataset expansion scheme usually requires the use of two models or traditional visual methods. These methods are both tedious and difficult to provide new polyp features for training data. Therefore, our research aims to efficiently generate high-quality polyp samples, so as to effectively expand the polyp dataset. In this study, we first added the attention mechanism to the… More >

  • Open Access

    ARTICLE

    A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification

    Umapathi Krishnamoorthy1,*, Shanmugam Jagan2, Mohammed Zakariah3, Abdulaziz S. Almazyad4,*, K. Gurunathan5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3903-3926, 2024, DOI:10.32604/cmc.2024.055910 - 19 December 2024

    Abstract Brain signal analysis from electroencephalogram (EEG) recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure. Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings. In the current seizure detection and classification landscape, most models primarily focus on binary classification—distinguishing between seizure and non-seizure states. While effective for basic detection, these models fail to address the nuanced stages of seizures and the intervals between them. Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure… More >

  • Open Access

    ARTICLE

    Data-Efficient Image Transformers for Robust Malware Family Classification

    Boadu Nkrumah1,*, Michal Asante1, Gaddafi Adbdul-Salam1, Wofa K. Adu-Gyamfi2

    Journal of Cyber Security, Vol.6, pp. 131-153, 2024, DOI:10.32604/jcs.2024.053954 - 17 December 2024

    Abstract The changing nature of malware poses a cybersecurity threat, resulting in significant financial losses each year. However, traditional antivirus tools for detecting malware based on signatures are ineffective against disguised variations as they have low levels of accuracy. This study introduces Data Efficient Image Transformer-Malware Classifier (DeiT-MC), a system for classifying malware that utilizes Data-Efficient Image Transformers. DeiT-MC treats malware samples as visual data and integrates a newly developed Hybrid GridBay Optimizer (HGBO) for hyperparameter optimization and better model performance under varying malware scenarios. With HGBO, DeiT-MC outperforms the state-of-the-art techniques with a strong accuracy More >

  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    ARTICLE

    Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection

    Arkan Kh Shakr Sabonchi*

    Journal on Artificial Intelligence, Vol.6, pp. 261-282, 2024, DOI:10.32604/jai.2024.056552 - 18 October 2024

    Abstract The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service (DDoS) attacks. The current growth rate in the number of Internet of Things (IoT) attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices. In this regard, the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices. We preprocessed two datasets, CICIDS and UNSW-NB15,… More >

  • Open Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024

    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

Displaying 1-10 on page 1 of 153. Per Page