Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Comprehensive Study on the Process of Greenhouse Gas Sequestration Based on a Microporous Media Model

    Deqiang Wang*, Xiansong Zhang, Jian Zhang, Baozhen Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1067-1081, 2022, DOI:10.32604/fdmp.2022.019888

    Abstract Carbon dioxide geological sequestration is an effective method to reduce the content of greenhouse gases in the atmosphere of our planet. This process can also be used to improve the production of oil reservoirs by mixing carbon dioxide and crude oil. In the present study, a differential separation experiment (DL) based on actual crude oil components is used to simulate such a process. The results show that after mixing, the viscosity and density of reservoir fluid decrease and the volume coefficient increase, indicating that the pre buried gas induces fluid expansion and an improvement of More >

  • Open Access

    ARTICLE

    Study on a Dual Embedded Discrete Fracture Model for Fluid Flow in Fractured Porous Media

    Heng Zhang1, Tingyu Li2, Dongxu Han1, *, Daobing Wang1, Dongliang Sun1, Bo Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 5-21, 2020, DOI:10.32604/cmes.2020.09290

    Abstract Simulation of fluid flow in the fractured porous media is very important and challenging. Researchers have developed some models for fractured porous media. With the development of related research in recent years, the prospect of embedded discrete fracture model (EDFM) is more and more bright. However, since the size of the fractures in the actual reservoir varies greatly, a very fine grid should be used which leads to a huge burden to the computing resources. To address this challenge, in the present paper, an upscaling based model is proposed. In this model, the flow in More >

Displaying 1-10 on page 1 of 2. Per Page