Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,373)
  • Open Access

    ARTICLE

    Actor–Critic Trajectory Controller with Optimal Design for Nonlinear Robotic Systems

    Nien-Tsu Hu1,*, Hsiang-Tung Kao1, Chin-Sheng Chen1, Shih-Hao Chang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074993 - 10 February 2026

    Abstract Trajectory tracking for nonlinear robotic systems remains a fundamental yet challenging problem in control engineering, particularly when both precision and efficiency must be ensured. Conventional control methods are often effective for stabilization but may not directly optimize long-term performance. To address this limitation, this study develops an integrated framework that combines optimal control principles with reinforcement learning for a single-link robotic manipulator. The proposed scheme adopts an actor–critic structure, where the critic network approximates the value function associated with the Hamilton–Jacobi–Bellman equation, and the actor network generates near-optimal control signals in real time. This dual… More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074041 - 10 February 2026

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

  • Open Access

    ARTICLE

    Improved Cuckoo Search Algorithm for Engineering Optimization Problems

    Shao-Qiang Ye*, Azlan Mohd Zain, Yusliza Yusoff

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073411 - 10 February 2026

    Abstract Engineering optimization problems are often characterized by high dimensionality, constraints, and complex, multimodal landscapes. Traditional deterministic methods frequently struggle under such conditions, prompting increased interest in swarm intelligence algorithms. Among these, the Cuckoo Search (CS) algorithm stands out for its promising global search capabilities. However, it often suffers from premature convergence when tackling complex problems. To address this limitation, this paper proposes a Grouped Dynamic Adaptive CS (GDACS) algorithm. The enhancements incorporated into GDACS can be summarized into two key aspects. Firstly, a chaotic map is employed to generate initial solutions, leveraging the inherent randomness… More >

  • Open Access

    ARTICLE

    Structure-Based Virtual Sample Generation Using Average-Linkage Clustering for Small Dataset Problems

    Chih-Chieh Chang*, Khairul Izyan Bin Anuar, Yu-Hwa Liu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073177 - 10 February 2026

    Abstract Small datasets are often challenging due to their limited sample size. This research introduces a novel solution to these problems: average linkage virtual sample generation (ALVSG). ALVSG leverages the underlying data structure to create virtual samples, which can be used to augment the original dataset. The ALVSG process consists of two steps. First, an average-linkage clustering technique is applied to the dataset to create a dendrogram. The dendrogram represents the hierarchical structure of the dataset, with each merging operation regarded as a linkage. Next, the linkages are combined into an average-based dataset, which serves as… More >

  • Open Access

    ARTICLE

    Dragonfang: An Open-Source Embedded Flight Controller with IMU-Based Stabilization for Quadcopter Applications

    Cosmin Dumitru, Emanuel Pantelimon, Alexandru Guzu, Georgian Nicolae*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072749 - 10 February 2026

    Abstract Unmanned aerial vehicles (UAVs), especially quadcopters, have become indispensable in numerous industrial and scientific applications due to their flexibility, low cost, and capability to operate in dynamic environments. This paper presents a complete design and implementation of a compact autonomous quadcopter capable of trajectory tracking, object detection, precision landing, and real-time telemetry via long-range communication protocols. The system integrates an onboard flight controller running real-time sensor fusion algorithms, a vision-based detection system on a companion single-board computer, and a telemetry unit using Long Range (LoRa) communication. Extensive flight tests were conducted to validate the system’s More >

  • Open Access

    REVIEW

    Sensor Fusion Models in Autonomous Systems: A Review

    Sangeeta Mittal1, Chetna Gupta1, Varun Gupta2,3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071599 - 10 February 2026

    Abstract This survey presents a comprehensive examination of sensor fusion research spanning four decades, tracing the methodological evolution, application domains, and alignment with classical hierarchical models. Building on this long-term trajectory, the foundational approaches such as probabilistic inference, early neural networks, rule-based methods, and feature-level fusion established the principles of uncertainty handling and multi-sensor integration in the 1990s. The fusion methods of 2000s marked the consolidation of these ideas through advanced Kalman and particle filtering, Bayesian–Dempster–Shafer hybrids, distributed consensus algorithms, and machine learning ensembles for more robust and domain-specific implementations. From 2011 to 2020, the widespread… More >

  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    REVIEW

    A Comprehensive Literature Review of AI-Driven Application Mapping and Scheduling Techniques for Network-on-Chip Systems

    Naveed Ahmad1, Muhammad Kaleem2, Mourad Elloumi3, Muhammad Azhar Mushtaq2, Ahlem Fatnassi4, Mohd Fazil5, Anas Bilal6,*, Abdulbasit A. Darem7,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074902 - 29 January 2026

    Abstract Network-on-Chip (NoC) systems are progressively deployed in connecting massively parallel megacore systems in the new computing architecture. As a result, application mapping has become an important aspect of performance and scalability, as current trends require the distribution of computation across network nodes/points. In this paper, we survey a large number of mapping and scheduling techniques designed for NoC architectures. This time, we concentrated on 3D systems. We take a systematic literature review approach to analyze existing methods across static, dynamic, hybrid, and machine-learning-based approaches, alongside preliminary AI-based dynamic models in recent works. We classify them… More >

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

  • Open Access

    ARTICLE

    Several Improved Models of the Mountain Gazelle Optimizer for Solving Optimization Problems

    Farhad Soleimanian Gharehchopogh*, Keyvan Fattahi Rishakan

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073808 - 29 January 2026

    Abstract Optimization algorithms are crucial for solving NP-hard problems in engineering and computational sciences. Metaheuristic algorithms, in particular, have proven highly effective in complex optimization scenarios characterized by high dimensionality and intricate variable relationships. The Mountain Gazelle Optimizer (MGO) is notably effective but struggles to balance local search refinement and global space exploration, often leading to premature convergence and entrapment in local optima. This paper presents the Improved MGO (IMGO), which integrates three synergistic enhancements: dynamic chaos mapping using piecewise chaotic sequences to boost exploration diversity; Opposition-Based Learning (OBL) with adaptive, diversity-driven activation to speed up… More >

Displaying 1-10 on page 1 of 1373. Per Page