Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems

    Song Gao, Shixin Liu*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5623-5641, 2025, DOI:10.32604/cmc.2025.058334 - 19 May 2025

    Abstract With the development of economic globalization, distributed manufacturing is becoming more and more prevalent. Recently, integrated scheduling of distributed production and assembly has captured much concern. This research studies a distributed flexible job shop scheduling problem with assembly operations. Firstly, a mixed integer programming model is formulated to minimize the maximum completion time. Secondly, a Q-learning-assisted co-evolutionary algorithm is presented to solve the model: (1) Multiple populations are developed to seek required decisions simultaneously; (2) An encoding and decoding method based on problem features is applied to represent individuals; (3) A hybrid approach of heuristic… More >

  • Open Access

    ARTICLE

    Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics

    Shaobo Deng*, Meiru Xie, Bo Wang, Shuaikun Zhang, Sujie Guan, Min Li

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2723-2751, 2025, DOI:10.32604/cmc.2024.057874 - 17 February 2025

    Abstract In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak… More >

  • Open Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024

    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892 - 20 May 2024

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation

    Fangzhen Ge1,3, Yating Wu1,*, Debao Chen2,4, Longfeng Shen1,5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 189-211, 2024, DOI:10.32604/iasc.2024.042841 - 21 May 2024

    Abstract It is still a huge challenge for traditional Pareto-dominated many-objective optimization algorithms to solve many-objective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front, resulting in poor performance of those algorithms. For this reason, we propose a reference vector-assisted algorithm with an adaptive niche dominance relation, for short MaOEA-AR. The new dominance relation forms a niche based on the angle between candidate solutions. By comparing these solutions, the solution with the best convergence is More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146 - 25 April 2024

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    A Multi-Objective Genetic Algorithm Based Load Balancing Strategy for Health Monitoring Systems in Fog-Cloud

    Hayder Makki Shakir, Jaber Karimpour*, Jafar Razmara

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 35-55, 2024, DOI:10.32604/csse.2023.038545 - 26 January 2024

    Abstract As the volume of data and data-generating equipment in healthcare settings grows, so do issues like latency and inefficient processing inside health monitoring systems. The Internet of Things (IoT) has been used to create a wide variety of health monitoring systems. Most modern health monitoring solutions are based on cloud computing. However, large-scale deployment of latency-sensitive healthcare applications is hampered by the cloud’s design, which introduces significant delays during the processing of vast data volumes. By strategically positioning servers close to end users, fog computing mitigates latency issues and dramatically improves scaling on demand, resource… More >

  • Open Access

    ARTICLE

    Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression

    Hassen Louati1,2, Ali Louati3,*, Elham Kariri3, Slim Bechikh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2519-2547, 2024, DOI:10.32604/cmes.2023.030806 - 15 December 2023

    Abstract Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues, particularly in the field of lung disease diagnosis. One promising avenue involves the use of chest X-Rays, which are commonly utilized in radiology. To fully exploit their potential, researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems. However, constructing and compressing these systems presents a significant challenge, as it relies heavily on the expertise of data scientists. To tackle this issue, we propose an automated approach that utilizes an evolutionary algorithm (EA) to optimize the design and compression More >

  • Open Access

    ARTICLE

    A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling

    Cuiyu Wang, Xinyu Li, Yiping Gao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1849-1870, 2023, DOI:10.32604/cmes.2023.028098 - 26 June 2023

    Abstract Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS) is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve this goal, a novel collaborative More >

Displaying 1-10 on page 1 of 46. Per Page