Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Managing Health Treatment by Optimizing Complex Lab-Developed Test Configurations: A Health Informatics Perspective

    Uzma Afzal1, Tariq Mahmood2, Ali Mustafa Qamar3,*, Ayaz H. Khan4,5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6251-6267, 2023, DOI:10.32604/cmc.2023.037653

    Abstract A complex Laboratory Developed Test (LDT) is a clinical test developed within a single laboratory. It is typically configured from many feature constraints from clinical repositories, which are part of the existing Laboratory Information Management System (LIMS). Although these clinical repositories are automated, support for managing patient information with test results of an LDT is also integrated within the existing LIMS. Still, the support to configure LDTs design needs to be made available even in standard LIMS packages. The manual configuration of LDTs is a complex process and can generate configuration inconsistencies because many constraints… More >

  • Open Access

    ARTICLE

    Biometric Finger Vein Recognition Using Evolutionary Algorithm with Deep Learning

    Mohammad Yamin1,*, Tom Gedeon2, Saleh Bajaba3, Mona M. Abusurrah4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5659-5674, 2023, DOI:10.32604/cmc.2023.034005

    Abstract In recent years, the demand for biometric-based human recognition methods has drastically increased to meet the privacy and security requirements. Palm prints, palm veins, finger veins, fingerprints, hand veins and other anatomic and behavioral features are utilized in the development of different biometric recognition techniques. Amongst the available biometric recognition techniques, Finger Vein Recognition (FVR) is a general technique that analyzes the patterns of finger veins to authenticate the individuals. Deep Learning (DL)-based techniques have gained immense attention in the recent years, since it accomplishes excellent outcomes in various challenging domains such as computer vision,… More >

  • Open Access

    ARTICLE

    A High-Quality Adaptive Video Reconstruction Optimization Method Based on Compressed Sensing

    Yanjun Zhang1, Yongqiang He2, Jingbo Zhang1, Yaru Zhao3, Zhihua Cui1,*, Wensheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 363-383, 2023, DOI:10.32604/cmes.2023.025832

    Abstract The video compression sensing method based on multi hypothesis has attracted extensive attention in the research of video codec with limited resources. However, the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task. To resolve this problem, this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimization method. It mainly includes the optimization of prediction blocks (OPBS), the selection of search windows and the use of neighborhood information. Specifically, the OPBS consists of two parts: the selection of blocks and the optimization of prediction blocks. We combine… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis

    Ierin Babu1,*, R. MathuSoothana2, S. Kumar2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791

    Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model,… More >

  • Open Access

    ARTICLE

    Design of Evolutionary Algorithm Based Energy Efficient Clustering Approach for Vehicular Adhoc Networks

    V. Dinesh1, S. Srinivasan2, Gyanendra Prasad Joshi3, Woong Cho4,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 687-699, 2023, DOI:10.32604/csse.2023.035459

    Abstract In a vehicular ad hoc network (VANET), a massive quantity of data needs to be transmitted on a large scale in shorter time durations. At the same time, vehicles exhibit high velocity, leading to more vehicle disconnections. Both of these characteristics result in unreliable data communication in VANET. A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability. Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs. But one such difficulty was reducing the cluster number under increasing transmitting nodes. This… More >

  • Open Access

    ARTICLE

    Maintain Optimal Configurations for Large Configurable Systems Using Multi-Objective Optimization

    Muhammad Abid Jamil1,*, Deafallah Alsadie1, Mohamed K. Nour1, Normi Sham Awang Abu Bakar2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4407-4422, 2022, DOI:10.32604/cmc.2022.029096

    Abstract To improve the maintenance and quality of software product lines, efficient configurations techniques have been proposed. Nevertheless, due to the complexity of derived and configured products in a product line, the configuration process of the software product line (SPL) becomes time-consuming and costly. Each product line consists of a various number of feature models that need to be tested. The different approaches have been presented by Search-based software engineering (SBSE) to resolve the software engineering issues into computational solutions using some metaheuristic approach. Hence, multiobjective evolutionary algorithms help to optimize the configuration process of SPL. More >

  • Open Access

    ARTICLE

    Natural Language Processing with Optimal Deep Learning Based Fake News Classification

    Sara A. Althubiti1, Fayadh Alenezi2, Romany F. Mansour3,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3529-3544, 2022, DOI:10.32604/cmc.2022.028981

    Abstract The recent advancements made in World Wide Web and social networking have eased the spread of fake news among people at a faster rate. At most of the times, the intention of fake news is to misinform the people and make manipulated societal insights. The spread of low-quality news in social networking sites has a negative influence upon people as well as the society. In order to overcome the ever-increasing dissemination of fake news, automated detection models are developed using Artificial Intelligence (AI) and Machine Learning (ML) methods. The latest advancements in Deep Learning (DL)… More >

  • Open Access

    ARTICLE

    Minimizing Total Tardiness in a Two-Machine Flowshop Scheduling Problem with Availability Constraints

    Mohamed Ali Rakrouki1,2,*, Abeer Aljohani1, Nawaf Alharbe1, Abdelaziz Berrais2, Talel Ladhari2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1119-1134, 2023, DOI:10.32604/iasc.2023.028604

    Abstract In this paper, we consider the problem of minimizing the total tardiness in a deterministic two-machine permutation flowshop scheduling problem subject to release dates of jobs and known unavailability periods of machines. The theoretical and practical importance of minimizing tardiness in flowshop scheduling environment has motivated us to investigate and solve this interested two-machine scheduling problem. Methods that solve this important optimality criterion in flowshop environment are mainly heuristics. In fact, despite the -hardness in the strong sense of the studied problem, to the best of our knowledge there are no approximate algorithms (constructive heuristics… More >

  • Open Access

    ARTICLE

    Managing Software Testing Technical Debt Using Evolutionary Algorithms

    Muhammad Abid Jamil*, Mohamed K. Nour

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 735-747, 2022, DOI:10.32604/cmc.2022.028386

    Abstract Technical debt (TD) happens when project teams carry out technical decisions in favor of a short-term goal(s) in their projects, whether deliberately or unknowingly. TD must be properly managed to guarantee that its negative implications do not outweigh its advantages. A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden. Test technical debt is the technical debt aspect of testing (or test debt). Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years. In this… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Z-Source DC-DC Boost Converter for Charging EV Battery

    P. Anitha1, K. Karthik Kumar2,*, M. Ravindran2, A. Saravanaselvan2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1377-1397, 2022, DOI:10.32604/iasc.2022.025396

    Abstract In this paper, efficient charging of electric vehicle battery from a considered renewable solar photovoltaic source with the help of a modified Z source with efficient boosting topology. Adapting this Z-source converter to act as a voltage gainer with a boosting function allows a solar Photovoltaic (PV) input voltage of 25VDC (Volts Direct Current) to be increased to a designed output voltage of 75VDC at a low duty ratio, resulting in minimal switching loss. The closed-loop steady-state and transient parameters at the output were analyzed and compared using modern evolutionary algorithms. The power range upheld… More >

Displaying 11-20 on page 2 of 43. Per Page