Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    ELK3-ID4 axis governs the metastatic features of triple negative breast cancer


    Oncology Research, Vol.32, No.1, pp. 127-138, 2024, DOI:10.32604/or.2023.042945

    Abstract Purpose: Cancer cell metastasis is a multistep process, and the mechanism underlying extravasation remains unclear. ELK3 is a transcription factor that plays a crucial role in regulating various cellular processes, including cancer metastasis. Based on the finding that ELK3 promotes the metastasis of triple-negative breast cancer (TNBC), we investigated whether ELK3 regulates the extravasation of TNBC by forming the ELK3-ID4 axis. ID4 functions as a transcriptional regulator that interacts with other transcription factors, inhibiting their activity and subsequently influencing various biological processes associated with cell differentiation, survival, growth, and metastasis. Methods: We assessed the correlation… More > Graphic Abstract

    ELK3-ID4 axis governs the metastatic features of triple negative breast cancer

  • Open Access


    Suspension state promotes extravasation of breast tumor cells by increasing integrin β1 expression

    Bingbing ZHANG1, 2, Ying ZHANG1, 2, Xiaomei ZHANG1, 2, Yonggang LV1, 2

    BIOCELL, Vol.42, No.1, pp. 17-24, 2018, DOI:10.32604/biocell.2018.06115

    Abstract Mechanical microenvironment can strongly affect the metastatic efficiency of circulating tumor cells. However, the effect of suspension state on their extravasation and the mechanisms involved are still unclear. To explore the influence of suspension state on extravasation (including adhesion, spreading and transendothelial migration) of breast tumor cells and its relevant molecular mechanism, MDA-MB-231 cells were cultured on poly (2-hydroxyethyl methacrylate) coated 6-well plates to minic the suspension state. Suspension state promoted adhesion, spreading and transendothelial migration of MDA-MB-231 cells to EAhy926 endothelial cells (ECs) monolayer under both the static condition and 0.5 dyne/cm2 flow shear stress More >

  • Open Access


    Tumor Cell Extravasation Mediated by Leukocyte Adhesion is Shear Rate Dependent on IL-8 Signaling*

    Shile Liang, Meghan Hoskins, Cheng Dong

    Molecular & Cellular Biomechanics, Vol.7, No.2, pp. 77-91, 2010, DOI:10.3970/mcb.2010.007.077

    Abstract To complete the metastatic journey, cancer cells have to disseminate through the circulation and extravasate to distal organs. However, the extravasation process, by which tumor cells leave a blood vessel and invade the surrounding tissue from the microcirculation, remains poorly understood at the molecular level. In this study, tumor cell adhesion to the endothelium (EC) and subsequent extravasation were investigated under various flow conditions. Results have shown polymorphonuclear neutrophils (PMNs) facilitate melanoma cell adhesion to the EC and subsequent extravasation by a shear-rate dependent mechanism. Melanoma cell-PMN interactions are mediated by the binding between intercellular More >

  • Open Access


    Melanoma Cell Extravasation under Flow Conditions Is Modulated by Leukocytes and Endogenously Produced Interleukin 8

    Cheng Dong1,2,3, Margaret J. Slattery2,3, Shile Liang3, Hsin-Hsin Peng2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 145-160, 2005, DOI:10.3970/mcb.2005.002.145

    Abstract Attachment of tumor cells to the endothelium (EC) under flow conditions is critical for the migration of tumor cells out of the vascular system to establish metastases. Innate immune system processes can potentially promote tumor progression through inflammation dependant mechanisms.\nobreakspace {} White blood cells, neutrophils (PMN) in particular, are being studied to better understand how the host immune system affects cancer cell adhesion and subsequent migration and metastasis. Melanoma cell interaction with the EC is distinct from PMN-EC adhesion in the circulation. We found PMN increased melanoma cell extravasation, which involved initial PMN tethering on… More >

Displaying 1-10 on page 1 of 4. Per Page