Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (675)
  • Open Access

    ARTICLE

    Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures

    Xiaolin Li1, Xinyue Li1, Liming Zhou2,*, Hangran Yang1, Xiaoqing Yuan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3821-3841, 2025, DOI:10.32604/cmc.2025.059937 - 06 March 2025

    Abstract Magneto-electro-elastic (MEE) materials are widely utilized across various fields due to their multi-field coupling effects. Consequently, investigating the coupling behavior of MEE composite materials is of significant importance. The traditional finite element method (FEM) remains one of the primary approaches for addressing such issues. However, the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision, which inevitably leads to a reduction in computational efficiency. To enhance the computational accuracy and efficiency of the FEM for heterogeneous… More >

  • Open Access

    ARTICLE

    Numerically and Experimentally Establishing Rheology Law for AISI 1045 Steel Based on Uniaxial Hot Compression Tests

    Josef Walek*, Petr Lichý

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3135-3153, 2025, DOI:10.32604/cmes.2025.059889 - 03 March 2025

    Abstract Plastometric experiments, supplemented with numerical simulations using the finite element method (FEM), can be advantageously used to characterize the deformation behavior of metallic materials. The accuracy of such simulations predicting deformation behaviors of materials is, however, primarily affected by the applied rheology law. The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel, widely used e.g., in automotive and power engineering, under extreme conditions (i.e., high temperatures, strain rates). The study consists of two main parts: experimentally analyzing the flow stress development of the steel under different thermomechanical… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging

    Josef Izák1,*, Marek Benč2, Petr Opěla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3115-3133, 2025, DOI:10.32604/cmes.2025.059234 - 03 March 2025

    Abstract The paper deals with the FEM (Finite Element Method) simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process. Swaging was performed at a temperature of 900°C. True flow stress-strain curves were determined for 600°C–900°C and used to construct a Hensel-Spittel model for FEM simulation. The process parameters, i.e., stress, temperature, imposed strain, and force, were investigation during the rotary swaging process. Firstly, the stresses induced during rotary swaging and the resistance of the material to deformation were investigated. The amount and distribution of imposed strain in… More >

  • Open Access

    ARTICLE

    In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation

    Ömer Ekim Genel*, Hilal Koç, Ekrem Tüfekci

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2043-2059, 2025, DOI:10.32604/cmc.2025.060111 - 17 February 2025

    Abstract Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that… More >

  • Open Access

    ARTICLE

    Elastohydrodynamic Lubrication Performance of Curvilinear Cylindrical Gears Based on Finite Element Method

    Xuegang Zhang1,*, Yingjie Dong2, Xian Wei1,*, Ruiqi Wang1, Qi Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1585-1609, 2025, DOI:10.32604/cmes.2025.059580 - 27 January 2025

    Abstract The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction. Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of the gear. This study focuses on this type of gear, employing both finite element analysis (FEA) and analytical methods to determine the input parameters required for elastohydrodynamic lubrication (EHL) analysis. The effects of assembly errors, tooth surface modifications, load, and face-milling cutter radius on the lubrication performance of these gears are systematically investigated. The finite element model (FEM) of the gear pair is utilized to calculate the coordinates… More >

  • Open Access

    ARTICLE

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

    Hsien-Tsung Lu1,2, Ching-Chi Hsu3,*, Qi-Quan Jian3, Wei-Ting Chen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1883-1898, 2025, DOI:10.32604/cmes.2025.057675 - 27 January 2025

    Abstract Reconstruction of a traumatic distal femur defect remains a therapeutic challenge. Bone defect implants have been proposed to substitute the bone defect, and their biomechanical performances can be analyzed via a numerical approach. However, the material assumptions for past computational human femur simulations were mainly homogeneous. Thus, this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique. A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique. An… More > Graphic Abstract

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

  • Open Access

    PROCEEDINGS

    Wall-Thickness Dependent Microstructure Evolution of GH4169 Thin-Walled Components Fabricated by Laser Powder Bed Fusion

    Zhancai Zhan1, Penghang Ling1, Wugui Jiang1,*, Tao Chen1, Qinghua Qin2,3, Longhui Mao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011400

    Abstract In the intricate and multi-physical process of Laser Powder Bed Fusion (LPBF), the microstructure significantly influences the performance of the resulting components, particularly evident in the manufacturing of thin-walled structures. In this paper, a prediction model of microstructure evolution coupled with 3D cellular automaton (CA) and finite element (FE) method for thin-walled components of GH4169 fabricated by LPBF is established. In this model, the multi-layer and multi-track temperature field within the interest region of thin-walled parts is simulated by the FE method. Subsequently, the temperature history is transferred to the CA model for predicting the… More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    PROCEEDINGS

    Development of an Abaqus Plug-in for Designing Hybrid Composite Laminates Against Projectile Impact

    Fengbo Han1,*, Kapil Krishnan1, Jide Oyebanji1, Naresh Kakur1, Rafael Savioli1, Alia Ruzanna Aziz1, Henrique Ramos1, Nikolaos Nikos1, Rafael Santiago1, Zhongwei Guan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011296

    Abstract This study introduces an innovative plug-in developed within the ABAQUS and Fox GUI environments, which is designed to streamline the design and simulation of hybrid composite laminates for ballistic impact resistance. The plug-in provides an advanced, user-friendly interface for composite laminate design, projectile selection, and ballistic impact simulation parameter configurations. It includes accurately reconstructed models of three projectile types: the tungsten-carbide core projectile M993, the hardened steel core projectile M61, and the lead-core projectile M80, based on scanned data. A distinctive feature of the plug-in is its capacity to facilitate the design of hybrid composite… More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

Displaying 1-10 on page 1 of 675. Per Page