Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The… More >

  • Open Access

    ARTICLE

    Modeling of Surface-Tension-Driven Flow of Blood in Capillary Tubes

    Jun Wang1, Wei Huang2, Raghbir S. Bhullar3, Pin Tong2

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 161-168, 2004, DOI:10.3970/mcb.2004.001.161

    Abstract Surface-tension-driven blood flow into a capillary tube, as in some medical devices, is studied. In a previous article, we considered the early stages of the entry flow from a drop of blood into a capillary, and solved the problem analytically under the assumption that the resistance of the air is negligible. In the present note we consider a capillary tube of finite length, with the far end containing a small window which opens to the atmosphere. The dynamic reverberation of the air in the capillary tube is analyzed in conjunction with the dynamics of the blood. Existing computing programs are… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced by an interface, namely a… More >

  • Open Access

    ARTICLE

    Bone and Joints Modelling with Individualized Geometric and Mechanical Properties Derived from Medical Images

    M.C. Ho Ba Tho1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 489-496, 2003, DOI:10.3970/cmes.2003.004.489

    Abstract The objective of the paper is to address the methodology developed to model bone and joints with individualised geometric and material properties from medical image data. An atlas of mechanical properties of human bone has been investigated demonstrating individual differences. From these data, predictive relationships have been established between mechanical properties and quantitative data derived from measurements on medical images. Subsequently, geometric and numerical models of bones with individualised geometrical and mechanical properties have been developed from the same source of image data. The advantages of this modelling technique are its ability to study the `patient' specificity. This should be… More >

  • Open Access

    ABSTRACT

    Finite Element Model for the Transport Swelling of Gelatin Methacrylate with Particles

    Wei-Chun Wang1, Tzu-Han Ma1, Chang-Wei Huang2, Nien-Ti Tsou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 56-56, 2019, DOI:10.32604/icces.2019.05409

    Abstract In recent years, the improvement of biomedical materials and their applications have gained much interest and been broadly discussed. Hydrogel, gelatin methacrylate (GelMa), is one of the applications with the greatest potential, such as cell culture, and studied by many researchers. In this study, a system consisting of GelMa and the special particles which can be aligned by applying electric field is developed. The alignment of the particles can alter the curvature of the GelMa substrate. The proposed system which provides the mechanical stimulus to the cell attached on the system due to different deformation curvatures can be used as… More >

  • Open Access

    ABSTRACT

    Numerical study of retrofitted deep coupling beams by bolting restrained steel plate

    B.Cheng1, R.K.L. Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 75-84, 2010, DOI:10.3970/icces.2010.015.075

    Abstract Deep reinforced concrete (RC) coupling beams with low shear span ratios and conventionally reinforced shear stirrups tend to fail in a brittle way with limited ductility and deformability under reversed cyclic loading. Experimental studies have shown that bolting restrained steel plate (BRSP) to existing deep RC coupling beams can enhance the deformability and energy dissipation while maintaining the flexural stiffness, improving the beams' performance during an earthquake. In this study, a nonlinear finite element package ATENA was used to simulate the overall behavior of three previously tested BRSP retrofitted coupling beams. This paper presents the numerical study for the accurate… More >

  • Open Access

    ABSTRACT

    On essential work of fracture method: theoretical consideration and numerical simulation

    X.-H. Chen1, Y.-W. Mai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 43-50, 2010, DOI:10.3970/icces.2010.014.043

    Abstract A general elastoplastic fracture mechanics theory is proposed for applying the Essential-Work-of-Fracture (EWF) Method to quasi-static and impact toughness characterization. Advanced finite element modeling is developed to simulate the EWF Method using the crack-tip opening angle criterion (CTOA) and the constitutive relation of the material under consideration. For Poly(ethylene-terephlate) (PET) films, the load-displacement curves are calculated for the whole crack propagation process of deeply double-edge notched tensile specimens (DENT) with different ligament lengths so as to determine the total work, the essential work and the non-essential work of fracture. The effects of specimen gauge length and ligament length on crack… More >

  • Open Access

    ABSTRACT

    Two-step Approach for Finite Element Model Updating of Bridge Using Ambient Vibration Data

    Soojin Cho1, Jin-Hak Yi2, Chung-Bang Yun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.4, pp. 151-152, 2009, DOI:10.3970/icces.2009.012.151

    Abstract The bridges are exposed to severe operational and environmental loadings, such as traffic, wind, and earthquake during their life time. Continuous exposure to such severe loadings may lead to structural damage requiring costly repair/retrofit and even may result in an unexpected disaster, which emphasizes the importance of assessing the current condition of bridges. From the last decade, FE model updating techniques based on the bridge dynamic characteristics are emerged to evaluate the current condition of bridges quantitatively. Most of the model updating techniques basically utilize an optimization process with an objective function built up by the residuals between the natural… More >

  • Open Access

    ABSTRACT

    Coupling Atomistic and Continuum Finite Element Models: Multi-Scale Simulations of Nanotribological Contacts of Nanometer Scale Coatings

    Baolin Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.2, pp. 81-84, 2008, DOI:10.3970/icces.2008.008.081

    Abstract When the size of a physical system is smaller than its characteristic dimensions, the macroscopic viewpoint may not be applicable. In addition, experiments at micro/nanometer scale are difficult and the analysis of nano-experimental data is far from simple. This is mostly due to the lack of effective models that are able to study the structural characteristics and mechanics behavior of the micro/nanometer physical systems. Atomic simulation simulation has been used extensively in the investigation of nanoscale phenomena. However, the size limit of atomic simulation is far short to reach the macroscale because of the limitation in computer capacity. Therefore, the… More >

  • Open Access

    ABSTRACT

    Patient Specific Knee Joint Finite Element Model Validation with High Accuracy Kinematics from Biplane Dynamic Radiography

    G. Papaioannou1, G. Nianios1, C. Mitroyiannis1, S.Tashman2, K.H. Yang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.1, pp. 7-12, 2008, DOI:10.3970/icces.2008.008.007

    Abstract Little is known about in vivo menisci loads and displacements in the knee during strenuous activities. We have developed a method that combines biplane high-speed dynamic radiography (DRSA) and a subject-specific finite element model for studying in vivo meniscal behavior. In a very controlled uniaxial compression loading condition, removing of the pressure sensor from the model can result in relatively large errors in contact and cartilage stress that are not reflected in the change of meniscal displacement. More >

Displaying 21-30 on page 3 of 60. Per Page