Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the… More >

  • Open Access

    ABSTRACT

    Finite Element Model for the Transport Swelling of Gelatin Methacrylate with Particles

    Wei-Chun Wang1, Tzu-Han Ma1, Chang-Wei Huang2, Nien-Ti Tsou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 56-56, 2019, DOI:10.32604/icces.2019.05409

    Abstract In recent years, the improvement of biomedical materials and their applications have gained much interest and been broadly discussed. Hydrogel, gelatin methacrylate (GelMa), is one of the applications with the greatest potential, such as cell culture, and studied by many researchers. In this study, a system consisting of GelMa and the special particles which can be aligned by applying electric field is developed. The alignment of the particles can alter the curvature of the GelMa substrate. The proposed system which provides the mechanical stimulus to the cell attached on the system due to different deformation… More >

  • Open Access

    ABSTRACT

    Inverse Identification of Damage Properties of Graphite Material Based on Experimental and Simulation Analysis

    Lu Wang, Guangyan Liu, Yanan Yi, Shaopeng Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 31-31, 2019, DOI:10.32604/icces.2019.04974

    Abstract Nuclear graphite is a key material in high temperature gas-cooled reactors. The evaluation of its damage evolution is of great importance for safety assessment of nuclear graphite structures. However, the damage properties of nuclear graphite are difficult to characterize by the traditional testing approaches, i.e., uniaxial tension and compression tests due to the inconvenience of conducting uniaxial tension/compression tests. In this paper, an inverse method was developed to identify the damage parameters of a nuclear graphite material IG11. The method is based on the non-contact digital image correlation and finite element model updating techniques, and More >

  • Open Access

    ARTICLE

    Intramyocardial Injections to De-Stiffen the Heart: A Subject-Specific in Silico Approach

    Yaghoub Dabiri1,3, Kevin L. Sack1,2, Semion Shaul1, Gabriel Acevedo-Bolton1, Jenny S. Choy3, Ghassan S. Kassab3, Julius M. Guccione1,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 185-197, 2019, DOI:10.32604/mcb.2019.07364

    Abstract We hypothesized that minimally invasive injections of a softening agent at strategic locations in stiff myocardium could de-stiffen the left ventricle (LV) globally. Physics-based finite element models of the LV were created from LV echocardiography images and pressures recorded during experiments in four swine. Results confirmed animal models of LV softening by systemic agents. Regional de-stiffening of myocardium led to global de-stiffening of LV. The mathematical set up was used to design LV global de-stiffening by regional softening of myocardium. At an end diastolic pressure of 23 mmHg, when 8 ml of the free wall… More >

  • Open Access

    ARTICLE

    Numerical Modeling Strategy for the Simulation of Nonlinear Response of Slender Reinforced Concrete Structural Walls

    Mohammed A. Mohammed1, Andre R. Barbosa1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 583-627, 2019, DOI:10.32604/cmes.2019.06052

    Abstract A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper. A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls, respectively. A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls. The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel More >

  • Open Access

    ARTICLE

    Finite Element Modeling in Drilling of Nimonic C-263 Alloy Using Deform-3D

    M. Nagaraj1,*, A. John Presin Kumar2, C. Ezilarasan3, Rishab Betala4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 679-692, 2019, DOI:10.31614/cmes.2019.04924

    Abstract The paper proposes a simulated 3D Finite Element Model (FEM) for drilling of Nickel based super alloy known as Nimonic C-263. The Lagrangian finite element model-based simulations were performed to determine the thrust force, temperature generation, effective stress, and effective strain. The simulations were performed according to the L27 orthogonal array. A perfect plastic work piece was assumed, and the shape is considered to be cylindrical. The spindle speed, feed rate, and point angle were considered as the input parameters. The work piece was modeled by Johnson–Cook (JC) material model and tungsten carbide (WC) was More >

  • Open Access

    ARTICLE

    Numerical Simulation and Experimental Studies on Elastic-Plastic Fatigue Crack Growth

    Jie Wang1, Wei Jiang1,*, Qi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 377-395, 2019, DOI:10.31614/cmes.2019.01836

    Abstract A elastic-plastic fatigue crack growth (FCG) finite element model was developed for predicting crack growth rate under cyclic load. The propagation criterion for this model was established based on plastically dissipated energy. The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface. The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel. Based on the proposed model, the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed. The results shows that the single peak More >

  • Open Access

    ARTICLE

    Residual Stresses in Resistance Spot Welded AZ61 Mg Alloy

    Davood Afshari1,*, Soheil Mirzaahamdi1, Zuheir Barsoum2

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 275-290, 2019, DOI:10.31614/cmes.2019.03880

    Abstract The use of magnesium alloys has been rapidly increased due to their ability to maintain high strengths at light weights. However weldability of steels and aluminum alloys by using resistance spot weld (RSW) process is a major issue, because it cannot be directly utilized for magnesium alloys. In this study, a structural-thermal-electrical finite element (FE) model has been developed to predict the distribution of residual stresses in RSW AZ61 magnesium alloy. Thermophysical and thermomechanical properties of AZ61 magnesium alloy have been experimentally determined, and have been used in FE model to increase the accuracy of… More >

  • Open Access

    ARTICLE

    Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction

    Libardo V. Vanegas-Useche1, Magd M. Abdel-Wahab2,3,4,*, Graham A. Parker5

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 169-184, 2018, DOI:10.3970/cmc.2018.01827

    Abstract In finite element modeling of impact, it is necessary to define appropriate values of the normal contact stiffness, Kn, and the Integration Time Step (ITS). Because impacts are usually of very short duration, very small ITSs are required. Moreover, the selection of a suitable value of Kn is a critical issue, as the impact behavior depends dramatically on this parameter. In this work, a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping… More >

  • Open Access

    Anisometry Anterior Cruciate Ligament Sport Injury Mechanism Study: A Finite Element Model with Optimization Method

    Na Li*, Wei Wang*, Bin Ye*, Song Wu†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.2, pp. 87-100, 2014, DOI:10.3970/mcb.2014.011.087

    Abstract ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE… More >

Displaying 21-30 on page 3 of 63. Per Page