Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access



    Vijayakumar Thulasi*, Thundil Karuppa Raj Rajagopal

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-5, 2013, DOI:10.5098/hmt.v4.2.3007

    Abstract Researchers across the world are exploring the potential of using diethyl ether as an alternate fuel to meet the stringent emission norms due to the high oxygen content in the fuel. The spray characteristics of any injected fuel are highly influenced by its physical properties. Due to high injection pressure in CI engines the fuel tends to cavitate inside the nozzle greatly. The change in fuel properties will affect the cavitating behavior of the fuel. In this paper computational technique is used to study and compare the internal flow characteristics of a fuel injector for different blends of diethyl ether… More >

  • Open Access


    Cross Flow Characteristics and Heat Transfer of Staggered Tubes Bundle: A Numerical Study

    Husam Rashid Hudear*, Saad Najeeb Shehab

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 367-383, 2023, DOI:10.32604/fhmt.2023.042639

    Abstract This paper presents a numerical emulation study of heat transmission through tube banks in three-dimensions. Staggered configuration is displayed by fluid dynamics using computer programs (CFD) software (ANSYS fluent). The computer model is used to predict the values of the Nusselt number when changing the values of heat flux and longitudinal pitch. The longitudinal pitch (SL/D) of 1.3, 1.8, and 2.4 mm. The transverse pitch (ST/D) of 1.5 mm, and also considered Reynolds numbers 10000, 13000, 17000, and 190000. The staggered configuration of the tube bundle is demonstrated to investigate the impact of this arrangement on the heat transmission rate… More >

  • Open Access



    Xuewen Caoa,b,*, Qi Chua,b, Xiaodan Songa,b, Yuxuan Lia,b, Jiang Biana,b

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-9, 2019, DOI:10.5098/hmt.13.2

    Abstract Wet natural gas widely exists in the natural gas industry, and the selection of throttling devices plays an important role in wet natural gas transportation. In order to study the flow field characteristics of different throttling devices in wet natural gas pipelines, a set of Laval nozzles, orifice plates, and plate valves have been designed. The standard k-ε model was selected for numerical simulation. By changing inlet pressure, inlet temperature or volume fraction of water-liquid, the pressure field and temperature fields of different throttling devices were obtained, and the influence of the presence of a shockwave on the flow fields… More >

  • Open Access


    Experimental Analysis of the Flow Characteristics of an Adjustable Critical-Flow Venturi Nozzle

    Chun Ye1,2,3, Jingjing Gao1,2,3, Zhihui Wang1,2,3, Weibiao Zheng1,2,3, Yibei Wang2,4, Xingkai Zhang1,2,3,*, Ming Liu5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 755-766, 2023, DOI:10.32604/fdmp.2022.021868

    Abstract The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate, critical pressure ratio, and discharge coefficient. The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate. The critical pressure ratio of the considered nozzle is above 0.85, and the critical flow control deviation of the gas flow is within ±3%. Liquid flow can reduce the gas critical mass flow… More >

  • Open Access


    LES Analysis of the Unsteady Flow Characteristics of a Centrifugal Pump Impeller

    Ting Zhang1, Denghao Wu1,2,*, Shijun Qiu2, Peijian Zhou1, Yun Ren3, Jiegang Mou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1349-1361, 2022, DOI:10.32604/fdmp.2022.019617

    Abstract Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers. In order to tackle this problem, in the present work, a large eddy simulation (LES) approach is applied to determine the characteristics of these unstable flows. Moreover, a vorticity identification method is used to characterize quantitatively the vortex position inside the impeller and its influencing area. By comparing the outcomes of the numerical simulations and experimental results provided by a Particle Image Velocimetry (PIV) technique, it is shown that an apparent “alternating stall” phenomenon exists inside the impeller when relatively small flow rate conditions are considered. The… More >

  • Open Access


    CFD Analysis of Fluid-Dynamic and Heat Transfer Effects Generated by a Fixed Electricity Transmission Line Interacting with an External Wind

    Yajuan Jia1, Lisha Shang1, Jiangping Nan1, Guangping Hu2, Zhigang Fang3,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 329-344, 2022, DOI:10.32604/fdmp.2022.017734

    Abstract The flow past a fixed single transmission conductor and the related heat transfer characteristics are investigated using computational fluid dynamics and a relevant turbulence model. After validating the method through comparison with relevant results in the literature, this thermofluid-dynamic problem is addressed considering different working conditions. It is shown that the resistance coefficient depends on the Reynolds number. As expected, the Nusselt number is also affected by Reynolds number. In particular, the Nusselt number under constant heat flux is always greater than that under a constant wall temperature. More >

  • Open Access


    CFD-Based Evaluation of Flow and Temperature Characteristics of Airflow in an Aircraft Cockpit

    Xiaosai Duan, Suihuai Yu*, Jianjie Chu, Dengkai Chen and Zhaojing Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 701-721, 2022, DOI:10.32604/cmes.2022.016779

    Abstract The rational design of airflow distribution is of great importance for comfort and energy conservation. Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study the distinct airflow distribution. This study developed the coupled heat transfer model of radiation, convection, and heat conduction for the cockpit flight environment. A three-dimensional physical model was created and a shear stress transfer (SST) k-w turbulence model was well verified with a high prediction accuracy of 91% for the experimental data. The strong inhomogeneous flow and temperature distribution were captured for various initial operating conditions (inlet temperature, inlet pressure,… More >

  • Open Access


    A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device

    Senchun Miao1,2,*, Hongbiao Zhang1, Wanglong Tian1, Yinqiang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1021-1036, 2021, DOI:10.32604/fdmp.2021.016925

    Abstract To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine (PAT) device, six different working conditions have been considered. Through numerical calculation, the spatio-temporal variation of static pressure, dynamic pressure, total pressure and turbulent energy dissipation have been determined in each section of the volute. It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the two adjacent sections. For a… More >

  • Open Access


    Flow Characteristics of Grains in a Conical Silo with a Central Decompression Tube Based on Experiments and DEM Simulations

    Huinan Sun1,*, Siqiang Wang2, Zhuoqing Zhang1, Chaoyong Xia1, Xu Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 855-873, 2021, DOI:10.32604/cmes.2021.015791

    Abstract Grains are widely present in industrial productions and processing, and are stored in silos. In the silo, auxiliary structures are added to achieve efficient production. However, little effort has been devoted to the influence of the internal structure of the silo on the granular flow. In this work, a silo with a central decompression tube is studied through experimental measurements and discrete element methods. Then, the influences of the central decompression tube on the flow behavior of grains and wall pressure are analyzed. Results show that the grains are in mass flow in the silo without a central decompression tube,… More >

  • Open Access


    A Research on the Flow Characteristics of a Splitter-Based Water Cooling System for Computer Boards

    Yukun Lv, Quanzhi Ge*, Zhuang Wei, Shuang Yang

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 833-844, 2021, DOI:10.32604/fdmp.2021.015082

    Abstract The splitter is an important component of water-based cooling systems used to extract heat from computer boards. In the present study, the flow characteristics of a 16-splitter structure were numerically simulated and compared with experimental results to verify the reliability of the numerical simulation method. Accordingly, the concept of splitter structural coefficients was proposed. Based on the results of this study, we recommend a selection range of 5 ≤ k ≤ 6 for the structure factor k of the splitter; after optimization, the maximum deviation of the splitter outlet flow was reduced from the original value of 100% to 8.3%. More >

Displaying 1-10 on page 1 of 18. Per Page