Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (242)
  • Open Access

    ARTICLE

    Hybrid Forecasting Techniques for Renewable Energy Integration in Electricity Markets Using Fractional and Fractal Approach

    Tariq Ali1,2,*, Muhammad Ayaz1,2, Mohammad Hijji2, Imran Baig3, MI Mohamed Ershath4, Saleh Albelwi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3839-3858, 2025, DOI:10.32604/cmes.2025.073169 - 23 December 2025

    Abstract The integration of renewable energy sources into electricity markets presents significant challenges due to the inherent variability and uncertainty of power generation from wind, solar, and other renewables. Accurate forecasting is crucial for ensuring grid stability, optimizing market operations, and minimizing economic risks. This paper introduces a hybrid forecasting framework incorporating fractional-order statistical models, fractal-based feature engineering, and deep learning architectures to improve renewable energy forecasting accuracy. Fractional autoregressive integrated moving average (FARIMA) and fractional exponential smoothing (FETS) models are explored for capturing long-memory dependencies in energy time-series data. Additionally, multifractal detrended fluctuation analysis (MFDFA) More >

  • Open Access

    ARTICLE

    Multi-Stage Centralized Energy Management for Interconnected Microgrids: Hybrid Forecasting, Climate-Resilient, and Sustainable Optimization

    Mohamed Kouki1, Nahid Osman2, Mona Gafar3, Ragab A. El-Sehiemy4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3783-3811, 2025, DOI:10.32604/cmes.2025.071964 - 23 December 2025

    Abstract The growing integration of nondispatchable renewable energy sources (PV, wind) and the need to cut CO2 emissions make energy management crucial. Microgrids provide a framework for RES integration but face challenges from intermittency, fluctuating loads, cost optimization, and uncertainty in real-time balancing. Accurate short-term forecasting of solar generation and demand is vital for reliable and sustainable operation. While stochastic and machine learning methods are used, they struggle with limited data, complex temporal patterns, and scalability. Key challenges include capturing seasonal to weekly variations and modeling sudden fluctuations in generation and consumption. To address… More >

  • Open Access

    ARTICLE

    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks

    Carlos Torres-Aguilar1,*, Pedro Moreno2,*, Diego Rossit3, Sergio Nesmachnow4, Karla M. Aguilar-Castro1, Edgar V. Macias-Melo1, Luis Hernández-Callejo5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3859-3881, 2025, DOI:10.32604/cmes.2025.069996 - 23 December 2025

    Abstract Solar chimneys are renewable energy systems designed to enhance natural ventilation, improving thermal comfort in buildings. As passive systems, solar chimneys contribute to energy efficiency in a sustainable and environmentally friendly way. The effectiveness of a solar chimney depends on its design and orientation relative to the cardinal directions, both of which are critical for optimal performance. This article presents a supervised learning approach using artificial neural networks to forecast the performance indicators of solar chimneys. The dataset includes information from 2784 solar chimney configurations, which encompasses various factors such as chimney height, channel thickness, More > Graphic Abstract

    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks

  • Open Access

    ARTICLE

    Attention-Enhanced CNN-GRU Method for Short-Term Power Load Forecasting

    Zheng Yin, Zhao Zhang*

    Journal on Artificial Intelligence, Vol.7, pp. 633-645, 2025, DOI:10.32604/jai.2025.074450 - 24 December 2025

    Abstract Power load forecasting load forecasting is a core task in power system scheduling, operation, and planning. To enhance forecasting performance, this paper proposes a dual-input deep learning model that integrates Convolutional Neural Networks, Gated Recurrent Units, and a self-attention mechanism. Based on standardized data cleaning and normalization, the method performs convolutional feature extraction and recurrent modeling on load and meteorological time series separately. The self-attention mechanism is then applied to assign weights to key time steps, after which the two feature streams are flattened and concatenated. Finally, a fully connected layer is used to generate More >

  • Open Access

    ARTICLE

    AI-Based Power Distribution Optimization in Hyperscale Data Centers

    Chirag Devendrakumar Parikh*

    Journal on Artificial Intelligence, Vol.7, pp. 571-584, 2025, DOI:10.32604/jai.2025.073765 - 01 December 2025

    Abstract With the increasing complexity and scale of hyperscale data centers, the requirement for intelligent, real-time power delivery has never been more critical to ensure uptime, energy efficiency, and sustainability. Those techniques are typically static, reactive (since CPU and workload scaling is applied to performance events that occur after a request has been submitted, and is thus can be classified as a reactive response.), and require manual operation, and cannot cope with the dynamic nature of the workloads, the distributed architectures as well as the non-uniform energy sources in today’s data centers. In this paper, we… More >

  • Open Access

    ARTICLE

    Comparison of Objective Forecasting Method Fit with Electrical Consumption Characteristics in Timor-Leste

    Ricardo Dominico Da Silva1,2, Jangkung Raharjo1,3,*, Sudarmono Sasmono1,3

    Energy Engineering, Vol.122, No.12, pp. 5073-5090, 2025, DOI:10.32604/ee.2025.071545 - 27 November 2025

    Abstract The rapid development of technology has led to an ever-increasing demand for electrical energy. In the context of Timor-Leste, which still relies on fossil energy sources with high operational costs and significant environmental impacts, electricity load forecasting is a strategic measure to support the energy transition towards the Net Zero Emission (NZE) target by 2050. This study aims to utilize historical electricity load data for the period 2013–2024, as well as data on external factors affecting electricity consumption, to forecast electricity load in Timor-Leste in the next 10 years (2025–2035). The forecasting results are expected… More >

  • Open Access

    ARTICLE

    Phase-Level Analysis and Forecasting of System Resources in Edge Device Cryptographic Algorithms

    Ehan Sohn1, Sangmyung Lee1, Sunggon Kim1, Kiwook Sohn1, Manish Kumar2, Yongseok Son3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2761-2785, 2025, DOI:10.32604/cmes.2025.070888 - 26 November 2025

    Abstract With the accelerated growth of the Internet of Things (IoT), real-time data processing on edge devices is increasingly important for reducing overhead and enhancing security by keeping sensitive data local. Since these devices often handle personal information under limited resources, cryptographic algorithms must be executed efficiently. Their computational characteristics strongly affect system performance, making it necessary to analyze resource impact and predict usage under diverse configurations. In this paper, we analyze the phase-level resource usage of AES variants, ChaCha20, ECC, and RSA on an edge device and develop a prediction model. We apply these algorithms… More >

  • Open Access

    ARTICLE

    Requirements and Constraints of Forecasting Algorithms Required in Local Flexibility Markets

    Alex Segura*, Joaquim Meléndez

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 649-672, 2025, DOI:10.32604/cmes.2025.070954 - 30 October 2025

    Abstract The increasing use of renewable energy sources, combined with the increase in electricity demand, has highlighted the importance of energy flexibility management in electrical grids. Energy flexibility is the capacity that generators and consumers have to change production and/or consumption to support grid operation, ensuring the stability and efficiency of the grid. Thus, Local Flexibility Markets (LFMs) are market-oriented mechanisms operated at different time horizons that support flexibility provision and trading at the distribution level, where the Distribution System Operators (DSOs) are the flexibility-demanding actors, and prosumers are the flexibility providers. This paper investigates the… More >

  • Open Access

    ARTICLE

    Grid-Supplied Load Prediction under Extreme Weather Conditions Based on CNN-BiLSTM-Attention Model with Transfer Learning

    Qingliang Wang1, Chengkai Liu1, Zhaohui Zhou1, Ye Han1, Luebin Fang2, Moxuan Zhao3, Xiao Cao3,*

    Energy Engineering, Vol.122, No.11, pp. 4715-4732, 2025, DOI:10.32604/ee.2025.068105 - 27 October 2025

    Abstract Grid-supplied load is the traditional load minus new energy generation, so grid-supplied load forecasting is challenged by uncertainties associated with the total energy demand and the energy generated off-grid. In addition, with the expansion of the power system and the increase in the frequency of extreme weather events, the difficulty of grid-supplied load forecasting is further exacerbated. Traditional statistical methods struggle to capture the dynamic characteristics of grid-supplied load, especially under extreme weather conditions. This paper proposes a novel grid-supplied load prediction model based on Convolutional Neural Network-Bidirectional LSTM-Attention mechanism (CNN-BiLSTM-Attention). The model utilizes transfer… More >

  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

Displaying 11-20 on page 2 of 242. Per Page