Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (176)
  • Open Access

    REVIEW

    Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease

    XIANGYU QUAN1, XUETING MA1, GUODONG LI2, XUEQI FU1, JIANGTAO LI1, LINLIN ZENG1,*

    BIOCELL, Vol.47, No.10, pp. 2163-2176, 2023, DOI:10.32604/biocell.2023.031226

    Abstract Exosomes are extracellular vesicles with a 30–150 nm diameter originating from endosomes. In recent years, scientists have regarded exosomes as an ideal small molecule carrier for the targeted treatment of Alzheimer’s disease (AD) across the blood-brain barrier due to their nanoscale size and low immunogenicity. A large amount of evidence shows that exosomes are rich in biomarkers, and it has been found that the changes in biomarker content in blood, cerebrospinal fluid, and urine are often associated with the onset of AD patients. In this paper, some recent advances in the use of exosomes in the treatment of AD are… More > Graphic Abstract

    Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease

  • Open Access

    ARTICLE

    Decentralized Heterogeneous Federal Distillation Learning Based on Blockchain

    Hong Zhu*, Lisha Gao, Yitian Sha, Nan Xiang, Yue Wu, Shuo Han

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3363-3377, 2023, DOI:10.32604/cmc.2023.040731

    Abstract Load forecasting is a crucial aspect of intelligent Virtual Power Plant (VPP) management and a means of balancing the relationship between distributed power grids and traditional power grids. However, due to the continuous emergence of power consumption peaks, the power supply quality of the power grid cannot be guaranteed. Therefore, an intelligent calculation method is required to effectively predict the load, enabling better power grid dispatching and ensuring the stable operation of the power grid. This paper proposes a decentralized heterogeneous federated distillation learning algorithm (DHFDL) to promote trusted federated learning (FL) between different federates in the blockchain. The algorithm… More >

  • Open Access

    ARTICLE

    Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit

    Yinghua Song1,2, Hairong Lyu1,2, Wei Zhang1,2,*

    Journal on Big Data, Vol.5, pp. 19-40, 2023, DOI:10.32604/jbd.2023.038249

    Abstract A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation, assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation. First, the passenger flow sequence models in the study are broken down using VMD for noise reduction. The objective environment features are then added to the characteristic factors that affect the passenger flow. The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm. It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy, by setting… More >

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML techniques, hybrid models, and performance… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

  • Open Access

    ARTICLE

    CT-NET: A Novel Convolutional Transformer-Based Network for Short-Term Solar Energy Forecasting Using Climatic Information

    Muhammad Munsif1,2, Fath U Min Ullah1,2, Samee Ullah Khan1,2, Noman Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1751-1773, 2023, DOI:10.32604/csse.2023.038514

    Abstract Photovoltaic (PV) systems are environmentally friendly, generate green energy, and receive support from policies and organizations. However, weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits. Existing PV forecasting techniques (sequential and convolutional neural networks (CNN)) are sensitive to environmental conditions, reducing energy distribution system performance. To handle these issues, this article proposes an efficient, weather-resilient convolutional-transformer-based network (CT-NET) for accurate and efficient PV power forecasting. The network consists of three main modules. First, the acquired PV generation data are forwarded to the pre-processing module for data refinement. Next, to carry out data encoding, a… More >

  • Open Access

    ARTICLE

    Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia

    Shehab Abdulhabib Alzaeemi1, Saratha Sathasivam2,*, Majid Khan bin Majahar Ali2, K. G. Tay1, Muraly Velavan3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1471-1491, 2023, DOI:10.32604/csse.2023.037366

    Abstract Rubber producers, consumers, traders, and those who are involved in the rubber industry face major risks of rubber price fluctuations. As a result, decision-makers are required to make an accurate estimation of the price of rubber. This paper aims to propose hybrid intelligent models, which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data, spanning from January 2016 to March 2021. The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining (RBFNN-kSAT). These algorithms, including Grey Wolf Optimization Algorithm, Artificial Bee Colony… More >

  • Open Access

    ARTICLE

    A Model Average Algorithm for Housing Price Forecast with Evaluation Interpretation

    Jintao Fu1, Yong Zhou1,*, Qian Qiu2, Guangwei Xu3, Neng Wan3

    Journal of Quantum Computing, Vol.4, No.3, pp. 147-163, 2022, DOI:10.32604/jqc.2022.038358

    Abstract In the field of computer research, the increase of data in result of societal progress has been remarkable, and the management of this data and the analysis of linked businesses have grown in popularity. There are numerous practical uses for the capability to extract key characteristics from secondary property data and utilize these characteristics to forecast home prices. Using regression methods in machine learning to segment the data set, examine the major factors affecting it, and forecast home prices is the most popular method for examining pricing information. It is challenging to generate precise forecasts since many of the regression… More >

  • Open Access

    REVIEW

    Recent Advances of Deep Learning in Geological Hazard Forecasting

    Jiaqi Wang1, Pengfei Sun1, Leilei Chen2, Jianfeng Yang3, Zhenghe Liu1, Haojie Lian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1381-1418, 2023, DOI:10.32604/cmes.2023.023693

    Abstract Geological hazard is an adverse geological condition that can cause loss of life and property. Accurate prediction and analysis of geological hazards is an important and challenging task. In the past decade, there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques. In particular, great efforts have been made in applying deep learning to predict geohazards. To understand the recent progress in this field, this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards. More >

  • Open Access

    ARTICLE

    Railway Passenger Flow Forecasting by Integrating Passenger Flow Relationship and Spatiotemporal Similarity

    Song Yu*, Aiping Luo, Xiang Wang

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1877-1893, 2023, DOI:10.32604/iasc.2023.039132

    Abstract Railway passenger flow forecasting can help to develop sensible railway schedules, make full use of railway resources, and meet the travel demand of passengers. The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow. Most of the previous studies used only a single feature for prediction and lacked correlations, resulting in suboptimal performance. To address the above-mentioned problem, we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network (F-SAGCN). First, we constructed the passenger flow relations graph (RG) based on the… More >

  • Open Access

    ARTICLE

    Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Amel Ali Alhussan1,*, Marwa M. Eid3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2117-2132, 2023, DOI:10.32604/iasc.2023.038811

    Abstract The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments. Meanwhile, the accurate prediction can be realized using the recent advances in machine learning and predictive models. This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory (LSTM) units. The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy. This optimization algorithm is based on the recently emerged dipper-throated optimization (DTO) and stochastic… More >

Displaying 11-20 on page 2 of 176. Per Page