Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    CBOE Volatility Index Forecasting under COVID-19: An Integrated BiLSTM-ARIMA-GARCH Model

    Min Hyung Park1, Dongyan Nan2,3, Yerin Kim1, Jang Hyun Kim1,2,3,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 121-134, 2023, DOI:10.32604/csse.2023.033247

    Abstract After the outbreak of COVID-19, the global economy entered a deep freeze. This observation is supported by the Volatility Index (VIX), which reflects the market risk expected by investors. In the current study, we predicted the VIX using variables obtained from the sentiment analysis of data on Twitter posts related to the keyword “COVID-19,” using a model integrating the bidirectional long-term memory (BiLSTM), autoregressive integrated moving average (ARIMA) algorithm, and generalized autoregressive conditional heteroskedasticity (GARCH) model. The Linguistic Inquiry and Word Count (LIWC) program and Valence Aware Dictionary for Sentiment Reasoning (VADER) model were utilized More >

  • Open Access

    ARTICLE

    Forecasting Stock Volatility Using Wavelet-based Exponential Generalized Autoregressive Conditional Heteroscedasticity Methods

    Tariq T. Alshammari1, Mohd Tahir Ismail1, Nawaf N. Hamadneh3,*, S. Al Wadi2, Jamil J. Jaber2, Nawa Alshammari3, Mohammad H. Saleh2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2589-2601, 2023, DOI:10.32604/iasc.2023.024001

    Abstract In this study, we proposed a new model to improve the accuracy of forecasting the stock market volatility pattern. The hypothesized model was validated empirically using a data set collected from the Saudi Arabia stock Exchange (Tadawul). The data is the daily closed price index data from August 2011 to December 2019 with 2027 observations. The proposed forecasting model combines the best maximum overlapping discrete wavelet transform (MODWT) function (Bl14) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model. The results show the model's ability to analyze stock market data, highlight important events that contain the More >

  • Open Access

    ARTICLE

    Wavelet Based Detection of Outliers in Volatility Time Series Models

    Khudhayr A. Rashedi1,2,*, Mohd Tahir Ismail1, Abdeslam Serroukh3, S. Al wadi4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3835-3847, 2022, DOI:10.32604/cmc.2022.026476

    Abstract We introduce a new wavelet based procedure for detecting outliers in financial discrete time series. The procedure focuses on the analysis of residuals obtained from a model fit, and applied to the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) like model, but not limited to these models. We apply the Maximal-Overlap Discrete Wavelet Transform (MODWT) to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers. Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform (DWT). The series sample size does not need to be a More >

  • Open Access

    ARTICLE

    The Volatility of High-Yield Bonds Using Mixed Data Sampling Methods

    Maojun Zhang1,2, Jiajin Yao1, Zhonghang Xia3, Jiangxia Nan1,*, Cuiqing Zhang1

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1233-1244, 2019, DOI:10.32604/cmc.2019.06118

    Abstract It is well known that economic policy uncertainty prompts the volatility of the high-yield bond market. However, the correlation between economic policy uncertainty and volatility of high-yield bonds is still not clear. In this paper, we employ GARCH-MIDAS models to investigate their correlation with US economic policy uncertainty index and S&P high-yield bond index. The empirical studies show that mixed volatility models can effectively capture the realized volatility of high-yield bonds, and economic policy uncertainty and macroeconomic factors have significant effects on the long-term component of high-yield bonds volatility. More >

  • Open Access

    ARTICLE

    Research on the Law of Garlic Price Based on Big Data

    Feng Guo1, Pingzeng Liu1,*, Chao Zhang1, Weijie Chen1, Wei Han2, Wanming Ren4, Yong Zheng4, Jianrui Ding3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 795-808, 2019, DOI:10.32604/cmc.2019.03795

    Abstract In view of the frequent fluctuation of garlic price under the market economy and the current situation of garlic price, the fluctuation of garlic price in the circulation link of garlic industry chain is analyzed, and the application mode of multidisciplinary in the agricultural industry is discussed. On the basis of the big data platform of garlic industry chain, this paper constructs a Garch model to analyze the fluctuation law of garlic price in the circulation link and provides the garlic industry service from the angle of price fluctuation combined with the economic analysis. The More >

Displaying 1-10 on page 1 of 5. Per Page