Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (966)
  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks

    Asal Jameel Khudhair#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068553 - 10 November 2025

    Abstract Community detection is one of the most fundamental applications in understanding the structure of complicated networks. Furthermore, it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships. Networking structures are highly sensitive in social networks, requiring advanced techniques to accurately identify the structure of these communities. Most conventional algorithms for detecting communities perform inadequately with complicated networks. In addition, they miss out on accurately identifying clusters. Since single-objective optimization cannot always generate accurate and comprehensive results, as multi-objective optimization can. Therefore, we utilized two objective functions… More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs

    Mohamed Ezz1, Meshrif Alruily1,*, Ayman Mohamed Mostafa2,*, Alaa S. Alaerjan1, Bader Aldughayfiq2, Hisham Allahem2, Abdulaziz Shehab2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.063189 - 10 November 2025

    Abstract Automated essay scoring (AES) systems have gained significant importance in educational settings, offering a scalable, efficient, and objective method for evaluating student essays. However, developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology, diglossia, and the scarcity of annotated datasets. This paper presents a hybrid approach to Arabic AES by combining text-based, vector-based, and embedding-based similarity measures to improve essay scoring accuracy while minimizing the training data required. Using a large Arabic essay dataset categorized into thematic groups, the study conducted four experiments to evaluate the impact of feature selection,… More >

  • Open Access

    ARTICLE

    Exploring Efficiency of Silicon Carbide for Next Generation of Alkali & Alkaline Earth Metals-Ion Batteries Using Quantum Mechanic Method

    Fatemeh Mollaamin1,*, Majid Monajjemi2

    Energy Engineering, Vol.122, No.12, pp. 4971-4986, 2025, DOI:10.32604/ee.2025.069945 - 27 November 2025

    Abstract Delving alternative high-performance anodes for lithium-ion batteries have always attracted scientist attention. A wide-bandgap semiconductor with excellent mechanical properties, “silicon carbide (SiC)”, has been introduced as the anode electrode. Two-dimensional SiC has special hybridization which can build it as an appropriate substitution for graphene. Energy storage technologies are keys in the extension and function of electric devices. To keep up with steady innovations in saving energy technologies, it is essential to progress corresponding practical strategies. In this research article, SiC has been designed and characterized as an anode electrode for lithium (Li), sodium (Na), beryllium… More > Graphic Abstract

    Exploring Efficiency of Silicon Carbide for Next Generation of Alkali & Alkaline Earth Metals-Ion Batteries Using Quantum Mechanic Method

  • Open Access

    ARTICLE

    A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types

    Erping Song1,*, Zipin Yao2

    Energy Engineering, Vol.122, No.12, pp. 5129-5147, 2025, DOI:10.32604/ee.2025.063827 - 27 November 2025

    Abstract Wind farm layout optimization is a critical challenge in renewable energy development, especially in regions with complex terrain. Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm, where the wake effect, wind speed, types of wind turbines, etc., have an impact on the output power of the wind farm. To solve the optimization problem of wind farm layout under complex terrain conditions, this paper proposes wind turbine layout optimization using different types of wind turbines, the aim is to reduce the influence of the wake effect… More >

  • Open Access

    ARTICLE

    Detecting Vehicle Mechanical Defects Using an Ensemble Deep Learning Model with Mel Frequency Cepstral Coefficients from Acoustic Data

    Mudasir Ali1, Muhammad Faheem Mushtaq2, Urooj Akram2, Nagwan Abdel Samee3,*, Mona M. Jamjoom4, Imran Ashraf5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025

    Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Fractional-Order Dynamical Framework for Multi-Scale Prediction of Breast Cancer Progression

    David Amilo1,*, Khadijeh Sadri1, Evren Hincal1,2, Mohamed Hafez3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2189-2222, 2025, DOI:10.32604/cmes.2025.070298 - 26 November 2025

    Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >

Displaying 1-10 on page 1 of 966. Per Page