Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (837)
  • Open Access

    ARTICLE

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

    Diju Gao, Shuai Li*

    Energy Engineering, Vol.122, No.4, pp. 1425-1442, 2025, DOI:10.32604/ee.2025.062101 - 31 March 2025

    Abstract To safeguard the ocean ecosystem, fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency, low noise, and cleanliness. However, fuel cells in hybrid power systems are highly susceptible to load transients, which can severely damage fuel cells and shorten their lifespan. Therefore, the formulation of energy management strategies accounting for power degradation is crucial and urgent. In this study, an improved strategy for equivalent consumption minimization strategy (ECMS) considering power degradation is proposed. The improved energy control strategy effectively controls the energy distribution of hydrogen fuel… More > Graphic Abstract

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

  • Open Access

    ARTICLE

    Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems

    Min Liu1, Qiliang Wu1, Zhixin Li2, Bo Zhao1, Leiqi Zhang1, Junhui Li2, Xingxu Zhu2,*

    Energy Engineering, Vol.122, No.4, pp. 1403-1424, 2025, DOI:10.32604/ee.2025.060256 - 31 March 2025

    Abstract To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms, an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed. First, considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage, an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system. Next, an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with… More >

  • Open Access

    ARTICLE

    GACL-Net: Hybrid Deep Learning Framework for Accurate Motor Imagery Classification in Stroke Rehabilitation

    Chayut Bunterngchit1, Laith H. Baniata2, Mohammad H. Baniata3, Ashraf ALDabbas4, Mohannad A. Khair5, Thanaphon Chearanai6, Sangwoo Kang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 517-536, 2025, DOI:10.32604/cmc.2025.060368 - 26 March 2025

    Abstract Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts. Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability. To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM) network (GACL-Net), a novel hybrid deep learning model… More >

  • Open Access

    ARTICLE

    Institution Attribute Mining Technology for Access Control Based on Hybrid Capsule Network

    Aodi Liu, Xuehui Du*, Na Wang, Xiangyu Wu

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1471-1489, 2025, DOI:10.32604/cmc.2025.059784 - 26 March 2025

    Abstract Security attributes are the premise and foundation for implementing Attribute-Based Access Control (ABAC) mechanisms. However, when dealing with massive volumes of unstructured text big data resources, the current attribute management methods based on manual extraction face several issues, such as high costs for attribute extraction, long processing times, unstable accuracy, and poor scalability. To address these problems, this paper proposes an attribute mining technology for access control institutions based on hybrid capsule networks. This technology leverages transfer learning ideas, utilizing Bidirectional Encoder Representations from Transformers (BERT) pre-trained language models to achieve vectorization of unstructured text… More >

  • Open Access

    ARTICLE

    Improved Resilience of Image Encryption Based on Hybrid TEA and RSA Techniques

    Muath AlShaikh1,*, Ahmed Manea Alkhalifah2, Sultan Alamri3

    Computer Systems Science and Engineering, Vol.49, pp. 353-376, 2025, DOI:10.32604/csse.2025.062433 - 21 March 2025

    Abstract Data security is crucial for improving the confidentiality, integrity, and authenticity of the image content. Maintaining these security factors poses significant challenges, particularly in healthcare, business, and social media sectors, where information security and personal privacy are paramount. The cryptography concept introduces a solution to these challenges. This paper proposes an innovative hybrid image encryption algorithm capable of encrypting several types of images. The technique merges the Tiny Encryption Algorithm (TEA) and Rivest-Shamir-Adleman (RSA) algorithms called (TEA-RSA). The performance of this algorithm is promising in terms of cost and complexity, an encryption time which is… More >

  • Open Access

    ARTICLE

    Robust Image Forgery Localization Using Hybrid CNN-Transformer Synergy Based Framework

    Sachin Sharma1,2,*, Brajesh Kumar Singh3, Hitendra Garg2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4691-4708, 2025, DOI:10.32604/cmc.2025.061252 - 06 March 2025

    Abstract Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing tools. The manual forgery localization is often reliant on forensic expertise. In recent times, machine learning (ML) and deep learning (DL) have shown promising results in automating image forgery localization. However, the ML-based method relies on hand-crafted features. Conversely, the DL method automatically extracts shallow spatial features to enhance the accuracy. However, DL-based methods lack the global co-relation of the features due to this… More >

  • Open Access

    ARTICLE

    Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants

    Yuqiao Liu1, Chen Pan1, YeonJae Oh2,*, Chang Gyoon Lim1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4593-4629, 2025, DOI:10.32604/cmc.2025.061196 - 06 March 2025

    Abstract Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors, an adversarial training module that… More >

  • Open Access

    ARTICLE

    An Improved Hybrid Deep Learning Approach for Security Requirements Classification

    Shoaib Hassan1,*, Qianmu Li1,*, Muhammad Zubair2, Rakan A. Alsowail3, Muhammad Umair2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4041-4067, 2025, DOI:10.32604/cmc.2025.059832 - 06 March 2025

    Abstract As the trend to use the latest machine learning models to automate requirements engineering processes continues, security requirements classification is tuning into the most researched field in the software engineering community. Previous literature studies have proposed numerous models for the classification of security requirements. However, adopting those models is constrained due to the lack of essential datasets permitting the repetition and generalization of studies employing more advanced machine learning algorithms. Moreover, most of the researchers focus only on the classification of requirements with security keywords. They did not consider other nonfunctional requirements (NFR) directly or… More >

  • Open Access

    ARTICLE

    A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks

    Haydar Abdulameer Marhoon1,2,*, Rafid Sagban3,4, Atheer Y. Oudah1,5, Saadaldeen Rashid Ahmed6,7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4181-4218, 2025, DOI:10.32604/cmc.2025.058822 - 06 March 2025

    Abstract In order to address the critical security challenges inherent to Wireless Sensor Networks (WSNs), this paper presents a groundbreaking barrier-based machine learning technique. Vital applications like military operations, healthcare monitoring, and environmental surveillance increasingly deploy WSNs, recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity. The proposed method innovatively partitions the network into logical segments or virtual barriers, allowing for targeted monitoring and data collection that aligns with specific traffic patterns. This approach not only improves the diversit. There are more types of data in the training set,… More >

  • Open Access

    ARTICLE

    Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems

    Jian Gao1, Hongliang Hao2, Caifeng Wen1,*, Yongsheng Wang3, Zhanhua Han4, Edwin E. Nykilla2, Yuwen Zhang2

    Energy Engineering, Vol.122, No.3, pp. 1175-1198, 2025, DOI:10.32604/ee.2025.061083 - 07 March 2025

    Abstract Power quality is a crucial area of research in contemporary power systems, particularly given the rapid proliferation of intermittent renewable energy sources such as wind power. This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra, PSD, and random signal power spectra. The relationship was derived, validated through experiments and simulations, and subsequently applied to multi-objective optimization. Various optimization algorithms were compared to achieve optimal system power quality. The findings revealed that the relationships between power quality indices and PSD were influenced by variations in More >

Displaying 1-10 on page 1 of 837. Per Page