Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (590)
  • Open Access

    PROCEEDINGS

    Numerical Investigation on Blasting Failure and Impact Effects of Marine Launching Airbags

    Jingjing Liu1, Long Yu1,*, Xiaoyan Li2, Jing Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012234

    Abstract Owing to uncontrollable deformation during the launching process, significant hazards such as airbag blast failure can be observed, which can cause severe damage to surrounding structures. Involving gas-solid coupling and nonlinear damage, the analysis and evaluation of airbag blasts are complex. Therefore, an effective method to analyze the possible blast behavior by coupling smoothed particle hydrodynamics (SPH) and the finite element method (FEM) has been presented in this study. First, a single airbag compression model was established to calculate the stiffness curve and the rationality of the numerical method was verified through comparison with experiments.… More >

  • Open Access

    PROCEEDINGS

    The Effect of Fatigue Loading Frequency on the Fatigue Crack Growth Behavior of a Nickel-Based Superalloy: Experimental Investigation and Modelling

    Yi Shi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012366

    Abstract The Nickel-based superalloy is wieldy applied in hot components of aero turbine engine due to its superior mechanical property at elevated temperature. However, the working condition of engine hot components are severe and thus the effect of high temperature, oxidation and time-dependent loading on fatigue crack growth behavior should be considered in structure analysis. In this study, first the effect of environment was experimentally investigated. Stand compact tension (CT) specimens under different temperatures and loading frequencies were tests to evaluate the role of temperature and time-dependent effect on fatigue crack growth. Results show that if… More >

  • Open Access

    PROCEEDINGS

    Investigation on Microscopic Properties of Copper Concentrate Particles by Combining Experiments and DEM Modelling

    Zhenyu Zhu1, Ping Zhou1, Xingbang Wan1, Zhuo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-4, 2024, DOI:10.32604/icces.2024.011777

    Abstract 1 General introduction
    The flash smelting is one of the dominant technologies for copper matte production. To meet the increasing demand, the production capability of flash smelting furnace has been increased several times. However, under current conditions, the segregation of concentrate particles becomes an escalating issue, impacting production efficiency and safety [1]. The DEM modelling is a powerful tool for investigating particle behaviors such as contact and collision, but the lack of accurate microscopic properties of copper concentrate particles makes it challenging to conduct reliable DEM simulations [2]. To address this gap, this study employs both… More >

  • Open Access

    PROCEEDINGS

    Conforming Embedded Isogeometric Analysis with Applications in Structural Mechanics and Fluid-Solid Interactions

    Xuefeng Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012543

    Abstract Isogeometric Analysis (IGA) was introduced by Thomas Hughes et al. with the aim of integrating CAD and FEA. IGA methods can be categorized into two groups: Conforming IGA, such as T-spline based IGA, and non-conforming IGA, such as immersed or embedded IGA. Embedded or immersed IGA methods do not require the construction of analysis-aware geometry, unlike conforming IGA methods such as T-spline based IGA. However, the Galerkin method does not directly apply to these methods, making it challenging for immersed IGA methods to impose strong Dirichlet boundary conditions directly. Nitsche's method is a popular approach… More >

  • Open Access

    PROCEEDINGS

    Investigation of Multiaxial Creep Rupture Mechanisms and Life Prediction in High-Temperature Alloys Under Complex Environments

    Dongxu Zhang1,*, Kaitai Feng1, Menghui Lv1, Zhixun Wen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.012317

    Abstract Modern advanced equipment is often in high-temperature and high-load service environment for a long time, in which multiaxial creep rupture is one of the important failure modes of key components. For example, typical structures under multiaxial stresses state, such as aero-engine turbine blades film cooling holes and turbine disk groove connection structures, are usually prioritized for creep rupture failure in high-temperature, high-pressure and high-speed loading environments. At present, the coupling mechanism between temperature and stress fields in complex environments, as well as the rupture mechanisms and life characteristics of structures with multiaxial stresses in service… More >

  • Open Access

    PROCEEDINGS

    Investigation on Microstructural Evolution and Corrosion Resistance Improvement of E690 Steel via Underwater Laser Directed Energy Deposition

    Mingzhi Chen1, Zhandong Wang2, Guifang Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012203

    Abstract Marine environments pose severe corrosion challenges to underwater equipment, thereby leading to significant risks and demanding immediate in-situ restoration. Here we developed an underwater laser directed energy deposition (UDMD) technique to repair the E690 steel and enhance its corrosion resistance. Systematic investigations about the underwater pressure (P) and 316L stainless steel (SS316L) coatings on the microstructure, mechanical properties, and corrosion resistance of the repaired E690 steel were conducted. Results show that water cooling can refine grain, promote the formation of lath martensite, and increase dislocation density. No obvious relationship between the pressure and microstructure evolution… More >

  • Open Access

    ARTICLE

    L-glutamic Acid and L-aspartic Acid Supplementation Mitigate Heavy Metal-Induced Stress in Phaseolus vulgaris L.

    Esra Arslan Yuksel*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2189-2207, 2024, DOI:10.32604/phyton.2024.055053 - 30 September 2024

    Abstract Heavy metal contamination in the environment, resulting from human activities or natural processes, poses a significant and widespread challenge. L-glutamic (L-glu) and L-aspartic acid (L-asp) treatments have been reported to improve plant metabolism of heavy metal-exposed plants, but the role of these amino acids in the resistance to lead (Pb2+), cadmium (Cd2+), arsenic (As3+) and nickel (Ni2+) treated-bean are unclear when applied together. This study investigated the L-glu and L-asp supplementation-induced changes in some physio-biochemical parameters and some stress-related gene expression levels in Pb2+, Cd2+, As3+, and Ni2+-stressed Phaseolus vulgaris (Elkoca and Gina) grown in nutrient solution. The combination of… More >

  • Open Access

    ARTICLE

    Drought Stress Alleviation in Chenopodium quinoa through Synergistic Effect of Silicon and Molybdenum via Triggering of SNF1-Associated Protein Kinase 2 Signaling Mechanism

    Asmat Askar1,#, Humaira Gul1,#, Mamoona Rauf1, Muhammad Arif2, Bokyung Lee3, Sajid Ali4,*, Abdulwahed Fahad Alrefaei5, Mikhlid H. Almutairi5, Zahid Ali Butt6, Ho-Youn Kim7, Muhammad Hamayun1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2455-2478, 2024, DOI:10.32604/phyton.2024.054508 - 30 September 2024

    Abstract Drought stress negatively impacts agricultural crop yields. By using mineral fertilizers and chemical regulators to encourage plant development and growth, its impact can be mitigated. The current study revealed that exogenous silicon (Si) (potassium silicate; K2Si2O5 at 1000 ppm) and molybdenum (Mo) (ammonium molybdate; (NH4)6Mo7O24•4H2O at 100 ppm) improved drought tolerance in quinoa (Chenopodium quinoa Willd). The research was conducted in a randomized complete block design with three biological replicates. The treatments comprised T0 (control, water spray), T4 (drought stress), and T1, T2, T3, T5, T6, and T7, i.e., foliar applications of silicon and molybdenum solutions individually… More >

  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    Advancements in Numerical Solutions: Fractal Runge-Kutta Approach to Model Time-Dependent MHD Newtonian Fluid with Rescaled Viscosity on Riga Plate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1213-1241, 2024, DOI:10.32604/cmes.2024.054819 - 27 September 2024

    Abstract Fractal time-dependent issues in fluid dynamics provide a distinct difficulty in numerical analysis due to their complex characteristics, necessitating specialized computing techniques for precise and economical solutions. This study presents an innovative computational approach to tackle these difficulties. The main focus is applying the Fractal Runge-Kutta Method to model the time-dependent magnetohydrodynamic (MHD) Newtonian fluid with rescaled viscosity flow on Riga plates. An efficient computational scheme is proposed for handling fractal time-dependent problems in flow phenomena. The scheme is comprised of three stages and constructed using three different time levels. The stability of the scheme… More >

Displaying 1-10 on page 1 of 590. Per Page