Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (240)
  • Open Access

    ARTICLE

    Evaluation of the Failure Impact of Jet Fire from Natural Gas Leakage on Parallel Pipelines

    Zezhi Wen1, Kai Zhang1, Shanlin Liang2, Liqiong Chen1,*, Zijian Xiong1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.066408 - 08 January 2026

    Abstract Maintaining the structural integrity of parallel natural gas pipelines during leakage-induced jet fires remains a critical engineering challenge. Existing methods often fail to account for the complex interactions among heat transfer, material behavior, and pipeline geometry, which can lead to overly simplified and potentially unsafe assessments. To address these limitations, this study develops a multiphysics approach that integrates small-orifice leakage theory with detailed thermo-fluid-structural simulations. The proposed framework contributes to a more accurate failure analysis through three main components: (1) coupled modeling that tracks transient heat flow and stress development as fire conditions evolve; (2)… More >

  • Open Access

    ARTICLE

    A Dual-Detection Method for Cashew Ripeness and Anthrax Based on YOLOv11-NSDDil

    Ran Liu, Yawen Chen, Dong Yang*, Jingjing Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070734 - 09 December 2025

    Abstract In the field of smart agriculture, accurate and efficient object detection technology is crucial for automated crop management. A particularly challenging task in this domain is small object detection, such as the identification of immature fruits or early stage disease spots. These objects pose significant difficulties due to their small pixel coverage, limited feature information, substantial scale variations, and high susceptibility to complex background interference. These challenges frequently result in inadequate accuracy and robustness in current detection models. This study addresses two critical needs in the cashew cultivation industry—fruit maturity and anthracnose detection—by proposing an… More >

  • Open Access

    ARTICLE

    A Multi-Stage Pipeline for Date Fruit Processing: Integrating YOLOv11 Detection, Classification, and Automated Counting

    Ali S. Alzaharani, Abid Iqbal*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070410 - 10 November 2025

    Abstract In this study, an automated multimodal system for detecting, classifying, and dating fruit was developed using a two-stage YOLOv11 pipeline. In the first stage, the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them. These bounding boxes are subsequently passed to a YOLOv11 classification model, which analyzes cropped images and assigns class labels. An additional counting module automatically tallies the detected fruits, offering a near-instantaneous estimation of quantity. The experimental results suggest high precision and recall for detection, high classification accuracy (across 15 classes), and near-perfect counting in More >

  • Open Access

    ARTICLE

    Bi-Crown-Ether Modified Bi-Piperidinium Anion Exchange Membranes for Fuel Cell Applications

    Minghao Yuan1,2, Lingling Ma1,2, Lv Li1,2, Shoutao Gong1,2, Lei Bai1,2, Yanzhen Ren1,2, Xinli Zhang1,2, Naeem Akhtar Qaisrani3,*, Fengxiang Zhang1,2,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 893-908, 2025, DOI:10.32604/jpm.2025.071240 - 26 December 2025

    Abstract Anion exchange membrane (AEM) fuel cells require membranes with a balance of high conductivity and durability. In this work, a novel bi-crown-ether modified piperidine structure was designed and synthesized, which was then introduced into the side chain of poly(arylene piperidinium), making a unique bi-crown-ether modified bi-piperidinium side chain grafted polymer for AEM fabrication. The double crown ether units enhanced cation–water interactions and promoted microphase separation, thereby forming efficient hydroxide ion transport channels. The resulting membrane exhibited high water uptake, well-defined ion clusters, and a hydroxide conductivity of 123 mS cm−1 at 80°C with an ion exchange More >

  • Open Access

    ARTICLE

    Synthesis and Application of Activated Charcoal from Indonesian Sugar Palm Bunches (Arenga longipes) as a Potential Absorbent for Heavy Metals

    Luthfi Hakim1,*, Yunida Syafriani Lubis2, Apri Heri Iswanto1, Harisyah Manurung1, Jayusman2, Widya Fatriasari3, Petar Antov4, Tomasz Rogoziński5, Lee Seng Hua6, Nur Izyan Wan Azelee7

    Journal of Renewable Materials, Vol.13, No.12, pp. 2355-2373, 2025, DOI:10.32604/jrm.2025.02025-0078 - 23 December 2025

    Abstract Activated charcoals were synthesized from sugar palm bunches (SPB) of the native tree of Arenga longipes in Indonesia. The synthesized activated charcoal (AC) was characterized, and utilized as an absorbent for heavy metals (lead/Pb and copper/Cu) through thermal activation. The synthesis of AC was accomplished through furnace activation at temperatures of 500°C, 600°C, 700°C, and 800°C. Acid chlorides were blended with the SPB-AC samples at 5% impregnation level and subsequently subjected to washing for activation, resulting in the elimination of volatile substances and ash content, which facilitates the development of a porous structure in the activated… More >

  • Open Access

    ARTICLE

    Stress Intensity Factor, Plastic Limit Pressure and Service Life Assessment of a Transportation-Damaged Pipe with a High-Aspect-Ratio Axial Surface Crack

    Božo Damjanović*, Pejo Konjatić, Marko Katinić

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1735-1753, 2025, DOI:10.32604/cmes.2025.072256 - 26 November 2025

    Abstract Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time. This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading, representing a realistic challenge in plant operation. The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe, subjected to 22,000 operational cycles under two daily charge and discharge conditions. The flaw size in the damaged pipe was determined based on a failure assessment procedure, ensuring a conservative and reliable input. The damage was characterized as a… More >

  • Open Access

    ARTICLE

    Use of Scaled Models to Evaluate Reinforcement Efficiency in Damaged Main Gas Pipelines to Prevent Avalanche Failure

    Nurlan Zhangabay1,*, Marco Bonopera2,*, Konstantin Avramov3, Maryna Chernobryvko3, Svetlana Buganova4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 241-261, 2025, DOI:10.32604/cmes.2025.069544 - 30 October 2025

    Abstract This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure. This study establishes the use of scaled-down experimental models for assessing the dynamic strength of damaged pipeline sections reinforced with wire wrapping or composite sleeves. A generalized dynamic model is introduced for numerical simulation to evaluate the effectiveness of reinforcement techniques. The model incorporates the elastoplastic behavior of pipe and wire materials, the influence of temperature on mechanical properties, the contact interaction between the pipe and the reinforcement components (including pretensioning), and local material failure under transient… More >

  • Open Access

    ARTICLE

    Thermal Performance and Application of a Self-Powered Coal Monitoring System with Heat Pipe and Thermoelectric Integration for Spontaneous Combustion Prevention

    Tao Lin1,*, Chengdai Chen1, Liyao Chen1, Fengqin Han1, Guanghui He2

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1661-1680, 2025, DOI:10.32604/fhmt.2025.070787 - 31 October 2025

    Abstract Targeting spontaneous coal combustion during stacking, we developed an efficient heat dissipation & self-supplied wireless temperature measurement system (SPWTM) with gravity heat pipe-thermoelectric integration for dual safety. The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications. The results show that, firstly, the effects of coal pile heat production power and burial depth, along with heat pipe startup and heat transfer characteristics. At 60 cm burial depth, the condensation section dissipates 98% coal pile heat via natural convection. Secondly, for the temperature measurement error caused by… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Thermal Storage Energy in a Building with Various Pipeline Design under Floor—Case Study

    Rafah H. Zaidan*, Najim A. Jasim

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025

    Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >

  • Open Access

    ARTICLE

    Gas Dynamics and Heat Transfer of Stationary Gas Flows in the Intake System with Different Designs of the Engine Cylinder Head

    Leonid Plotnikov*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1443-1454, 2025, DOI:10.32604/fhmt.2025.068060 - 31 October 2025

    Abstract Industry and energy continue to require piston engines (PICE) at a high level worldwide. Therefore, science and technology must urgently work on improving the PICE working cycle. Improving the quality of the intake process of the working fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE. The purpose of the study was to assess the impact of various cylinder head (CylH) designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system. Three different CylH designs were studied: the basic configuration… More >

Displaying 1-10 on page 1 of 240. Per Page