Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (162)
  • Open Access


    A Transient-Pressure-Based Numerical Approach for Interlayer Identification in Sand Reservoirs

    Hao Luo1, Haibo Deng1, Honglin Xiao1, Shaoyang Geng2,*, Fu Hou1, Gang Luo1, Yaqi Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 641-659, 2024, DOI:10.32604/fdmp.2023.043565

    Abstract Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers is critical for minimizing the uncertainty associated with oilfield development and improving oil and gas recovery. Identifying interlayers outside wells using identification methods based on logging data and machine learning is difficult and seismic-based identification techniques are expensive. Herein, a numerical model based on seepage and well-testing theories is introduced to identify interlayers using transient pressure data. The proposed model relies on the open-source MATLAB Reservoir Simulation Toolbox. The effects of the interlayer thickness, position, and width on the pressure response are thoroughly investigated. A procedure for… More >

  • Open Access


    Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs

    Lifeng Liu1, Menghe Shi2, Jianhui Wang3, Wendong Wang2,*, Yuliang Su2, Xinyu Zhuang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 595-607, 2024, DOI:10.32604/fdmp.2023.041962

    Abstract Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which are at the root of well-known problems related to injection and production. In this study, a gas injection flooding approach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracture channeling and the related impact on production are considered for horizontal wells with different fracture morphologies. Useful data and information are provided about the regulation of gas channeling and possible strategies to delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that in order… More >

  • Open Access


    Modeling of Reactive Flow and Precipitation in Unconventional Reservoirs

    Fengchang Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09747

    Abstract Mineral nucleation and precipitation commonly occur in nature and plays an important role in many energyrelated applications with reactive flow. For instance, minerals nucleate and precipitate as scale in the pore structure in unconventional reservoirs and significantly reduce the permeability of the porous media. This phenomenon could lead to a rapid decrease in production and cause significant financial loss. The need to predict the dynamic properties of such systems has resulted in questions about the fundamental mechanisms of reactive flow as well as mineral nucleation and precipitation in pores. Additionally, there is still a discrepancy between laboratory molecular scale findings… More >

  • Open Access


    Analytical and Numerical Methods to Study the MFPT and SR of a Stochastic Tumor-Immune Model

    Ying Zhang1, Wei Li1,*, Guidong Yang1, Snezana Kirin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2177-2199, 2024, DOI:10.32604/cmes.2023.030728

    Abstract The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model with noise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian white noise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. As follows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPT is obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrence of the tumor from the extinction state to the tumor-present state is more concerned in this paper. A more efficient algorithm of Back-Propagation Neural… More >

  • Open Access


    Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process

    Chunlei Ruan1,2,*, Cengceng Dong1, Kunfeng Liang3, Zhijun Liu1, Xinru Bao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3033-3049, 2024, DOI:10.32604/cmes.2023.030607

    Abstract Using Euler’s first-order explicit (EE) method and the peridynamic differential operator (PDDO) to discretize the time and internal crystal-size derivatives, respectively, the Euler’s first-order explicit method–peridynamic differential operator (EE–PDDO) was obtained for solving the one-dimensional population balance equation in crystallization. Four different conditions during crystallization were studied: size-independent growth, size-dependent growth in a batch process, nucleation and size-independent growth, and nucleation and size-dependent growth in a continuous process. The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods. The method is characterized by non-oscillation and high… More > Graphic Abstract

    Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process

  • Open Access


    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown that the micro-rotational velocity of… More >

  • Open Access


    Relationship between Parent-Child Attachment and Problem Behaviors among Chinese Firstborn Children in Family Transitions: A Meta-Analysis

    Cong Liu1, Mohd Nazri Abdul Rahman1,*, Nur Eva2

    International Journal of Mental Health Promotion, Vol.25, No.11, pp. 1161-1172, 2023, DOI:10.32604/ijmhp.2023.030324

    Abstract The implementation of China’s three-child fertility policy has led to a notable increase in multiple-child families. Notably, firstborn children experience a significant transition from being an only child to a non-only child. This transition is associated with problematic behaviors, affecting their social adjustment, sibling relationships, and family harmony. Although several studies have examined the relationship between parent-child attachment and problem behaviors exhibited by firstborn children during family transitions, the findings have been inconsistent. Hence, a meta-analytic study was undertaken to elucidate the inconsistencies in this relationship and explore the moderating factors that may contribute to these discrepancies. Using a systematic… More >

  • Open Access


    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is achieved through the incorporation of… More >

  • Open Access


    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the feasibility of utilizing the… More >

  • Open Access


    Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading

    Baofeng Ji1,2,3,*, Ying Wang1,2,3, Weixing Wang1, Shahid Mumtaz4, Charalampos Tsimenidis4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1885-1905, 2024, DOI:10.32604/cmes.2023.030872

    Abstract The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a viable solution for achieving high reliability and low latency communication. This study explores the potential of employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time switching (TS) and power splitting… More >

Displaying 1-10 on page 1 of 162. Per Page