Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    CEOE-Net: Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis

    Huihui Yang1, Saif Ur Rehman Khan2,*, Omair Bilal2, Chao Chen1,*, Ming Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025

    Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >

  • Open Access

    ARTICLE

    An Infrared-Visible Image Fusion Network with Channel-Switching for Low-Light Object Detection

    Tianzhe Jiao, Yuming Chen, Xiaoyue Feng, Chaopeng Guo, Jie Song*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2681-2700, 2025, DOI:10.32604/cmc.2025.069235 - 23 September 2025

    Abstract Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of visible and infrared images. However, the inherent differences in the imaging mechanisms of visible and infrared modalities make effective cross-modal fusion challenging. Furthermore, constrained by the physical characteristics of sensors and thermal diffusion effects, infrared images generally suffer from blurred object contours and missing details, making it difficult to extract object features effectively. To address these issues, we propose an infrared-visible image fusion network that realizes multimodal information fusion… More >

  • Open Access

    ARTICLE

    MMIF: Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention

    Jianjun Liu1, Yang Li2,*, Xiaoting Sun3,*, Xiaohui Wang1, Hanjiang Luo2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3551-3568, 2025, DOI:10.32604/cmc.2025.066864 - 23 September 2025

    Abstract Multimodal image fusion plays an important role in image analysis and applications. Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image. One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues. This paper proposes a multimodal medical image fusion network (MMIF-Net) based on multiscale hybrid attention. The method first decomposes the original image to obtain the low-rank and significant parts. Then, to utilize the features at different More >

  • Open Access

    ARTICLE

    A Systematic Comparison of Discrete Cosine Transform-Based Approaches for Multi-Focus Image Fusion

    Muhammad Osama1, Sarwar Shah Khan2,*, Sajid Khan2, Muzammil Khan3, Mian Muhammad Danyal4, Reshma Khan1

    Digital Engineering and Digital Twin, Vol.3, pp. 17-34, 2025, DOI:10.32604/dedt.2025.066344 - 19 August 2025

    Abstract Image fusion is a technique used to combine essential information from two or more source images into a single, more informative output image. The resulting fused image contains more meaningful details than any individual source image. This study focuses on multi-focus image fusion, a crucial area in image processing. Due to the limited depth of field of optical lenses, it is often challenging to capture an image where all areas are in focus simultaneously. As a result, multi-focus image fusion plays a key role in integrating and extracting the necessary details from different focal regions.… More >

  • Open Access

    ARTICLE

    A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion

    Kezhen Xie1,2, Syed Mohd Zahid Syed Zainal Ariffin1,*, Muhammad Izzad Ramli1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 997-1011, 2025, DOI:10.32604/cmc.2025.063469 - 09 June 2025

    Abstract Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images. However, existing methods often fail to distinguish salient objects from background regions, leading to detail suppression in salient regions due to global fusion strategies. This study presents a mask-guided latent low-rank representation fusion method to address this issue. First, the GrabCut algorithm is employed to extract a saliency mask, distinguishing salient regions from background regions. Then, latent low-rank representation (LatLRR) is applied to extract deep image features, enhancing More >

  • Open Access

    ARTICLE

    LLE-Fuse: Lightweight Infrared and Visible Light Image Fusion Based on Low-Light Image Enhancement

    Song Qian, Guzailinuer Yiming, Ping Li, Junfei Yang, Yan Xue, Shuping Zhang*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4069-4091, 2025, DOI:10.32604/cmc.2025.059931 - 06 March 2025

    Abstract Infrared and visible light image fusion technology integrates feature information from two different modalities into a fused image to obtain more comprehensive information. However, in low-light scenarios, the illumination degradation of visible light images makes it difficult for existing fusion methods to extract texture detail information from the scene. At this time, relying solely on the target saliency information provided by infrared images is far from sufficient. To address this challenge, this paper proposes a lightweight infrared and visible light image fusion method based on low-light enhancement, named LLE-Fuse. The method is based on the… More >

  • Open Access

    ARTICLE

    Research on Multimodal Brain Tumor Segmentation Algorithm Based on Feature Decoupling and Information Bottleneck Theory

    Xuemei Yang1, Yuting Zhou2, Shiqi Liu1, Junping Yin2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3281-3307, 2025, DOI:10.32604/cmc.2024.057991 - 17 February 2025

    Abstract Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up learning method for different modal information is constructed, which enhances the features’ expression ability and the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow. To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant to… More >

  • Open Access

    ARTICLE

    Enhanced Growth Optimizer and Its Application to Multispectral Image Fusion

    Jeng-Shyang Pan1,2, Wenda Li1, Shu-Chuan Chu1,*, Xiao Sui1, Junzo Watada3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3033-3062, 2024, DOI:10.32604/cmc.2024.056310 - 18 November 2024

    Abstract The growth optimizer (GO) is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment. However, the original GO algorithm is constrained by two significant limitations: slow convergence and high memory requirements. This restricts its application to large-scale and complex problems. To address these problems, this paper proposes an innovative enhanced growth optimizer (eGO). In contrast to conventional population-based optimization algorithms, the eGO algorithm utilizes a probabilistic model, designated as the virtual population, which is capable of accurately replicating the… More >

  • Open Access

    ARTICLE

    CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm

    Chun-Ming Wu1, Mei-Ling Ren2,*, Jin Lei2, Zi-Mu Jiang3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2857-2872, 2024, DOI:10.32604/cmc.2024.053708 - 15 August 2024

    Abstract To address the issues of incomplete information, blurred details, loss of details, and insufficient contrast in infrared and visible image fusion, an image fusion algorithm based on a convolutional autoencoder is proposed. The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map. A multi-scale convolution attention module is suggested to enhance the communication of feature information. At the same time, the feature transformation module is introduced to learn more robust feature representations, aiming to preserve the integrity of… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

Displaying 1-10 on page 1 of 38. Per Page