Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (564)
  • Open Access

    ARTICLE

    AI-based detection of MRI-invisible prostate cancer with nnU-Net

    Jingcheng Lyu1,2,#, Ruiyu Yue1,2,#, Boyu Yang1,2, Xuanhao Li1,2, Jian Song1,2,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 445-456, 2025, DOI:10.32604/cju.2025.068853 - 30 October 2025

    Abstract Objectives: This study aimed to develop an artificial intelligence (AI)-based image recognition system using the nnU-Net adaptive neural network to assist clinicians in detecting magnetic resonance imaging (MRI)-invisible prostate cancer. The motivation stems from the diagnostic challenges, especially when MRI findings are inconclusive (Prostate Imaging Reporting and Data System [PI-RADS] score ≤ 3). Methods: We retrospectively included 150 patients who underwent systematic prostate biopsy at Beijing Friendship Hospital between January 2013 and January 2023. All were pathologically confirmed to have clinically significant prostate cancer, despite negative findings on preoperative MRI. A total of 1475 MRI… More >

  • Open Access

    ARTICLE

    Hybrid Meta-Heuristic Feature Selection Model for Network Traffic-Based Intrusion Detection in AIoT

    Seungyeon Baek1,#, Jueun Jeon2,#, Byeonghui Jeong1, Young-Sik Jeong1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1213-1236, 2025, DOI:10.32604/cmes.2025.070679 - 30 October 2025

    Abstract With the advent of the sixth-generation wireless technology, the importance of using artificial intelligence of things (AIoT) devices is increasing to enhance efficiency. As massive volumes of data are collected and stored in these AIoT environments, each device becomes a potential attack target, leading to increased security vulnerabilities. Therefore, intrusion detection studies have been conducted to detect malicious network traffic. However, existing studies have been biased toward conducting in-depth analyses of individual packets to improve accuracy or applying flow-based statistical information to ensure real-time performance. Effectively responding to complex and multifaceted threats in large-scale AIoT… More >

  • Open Access

    ARTICLE

    Physics-Informed Neural Networks for Multiaxial Fatigue Life Prediction of Aluminum Alloy

    Ehsan Akbari1, Tajbakhsh Navid Chakherlou1, Hamed Tabrizchi2,3,*, Amir Mosavi3,4,5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 305-325, 2025, DOI:10.32604/cmes.2025.068581 - 30 October 2025

    Abstract The ability to predict multiaxial fatigue life of Al-Alloy 7075-T6 under complex loading conditions is critical to assessing its durability under complex loading conditions, particularly in aerospace, automotive, and structural applications. This paper presents a physical-informed neural network (PINN) model to predict the fatigue life of Al-Alloy 7075-T6 over a variety of multiaxial stresses. The model integrates the principles of the Geometric Multiaxial Fatigue Life (GMFL) approach, which is a novel fatigue life prediction approach to estimating fatigue life by combining multiple fatigue criteria. The proposed model aims to estimate fatigue damage accumulation by the More >

  • Open Access

    ARTICLE

    Energy-Based Approach for Short-Term Voltage Stability Analysis and Assessment

    Wenbiao Li1,2, Zhichong Cao1,*, Zhengyu Li3, Wenbiao Tao3, Cheng Liu1, Yuxin Shi3, Rundong Tian1

    Energy Engineering, Vol.122, No.11, pp. 4733-4754, 2025, DOI:10.32604/ee.2025.068683 - 27 October 2025

    Abstract With the increasing penetration of renewable energy in power systems, grid structures and operational paradigms are undergoing profound transformations. When subjected to disturbances, the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses, posing significant threats to system security and stability. To achieve reliable short-term voltage stability assessment under large-scale renewable integration, this paper innovatively proposes a response-driven online assessment method based on energy function theory. First, energy modeling of system components is performed based on energy function theory, followed by analysis of energy interaction mechanisms during… More >

  • Open Access

    ARTICLE

    The Solar Power Efficiency to Control Hydro-Organics Intelligence Agriculture System in Greenhouse

    Eakbodin Gedkhaw, Nantinee Soodtoetong*

    Energy Engineering, Vol.122, No.11, pp. 4349-4363, 2025, DOI:10.32604/ee.2025.068577 - 27 October 2025

    Abstract This research aimed to study the efficiency of solar power system in controlling hydro-organic smart farming system in closed greenhouse by developing an off-grid system consisting of 450 W solar panel, MPPT charge controller, 500 W Pure Sine Wave inverter and 2150 Ah Deep Cycle batteries in series as 24 V system to supply power to automatic control devices, including temperature, humidity, pH sensor and water pump in NFT (Nutrient Film Technique) hydroponic system using organic nutrient solution. The test result between 08:00–17:00 or 30 days found that the system can produce a maximum of… More > Graphic Abstract

    The Solar Power Efficiency to Control Hydro-Organics Intelligence Agriculture System in Greenhouse

  • Open Access

    ARTICLE

    AI-Driven Cybersecurity Framework for Safeguarding University Networks from Emerging Threats

    Boniface Wambui1,*, Margaret Mwinji1, Hellen Nyambura2

    Journal of Cyber Security, Vol.7, pp. 463-482, 2025, DOI:10.32604/jcs.2025.069444 - 23 October 2025

    Abstract As universities rapidly embrace digital transformation, their growing dependence on interconnected systems for academic, research, and administrative operations has significantly heightened their exposure to sophisticated cyber threats. Traditional defenses such as firewalls and signature-based intrusion detection systems have proven inadequate against evolving attacks like malware, phishing, ransomware, and advanced persistent threats (APTs). This growing complexity necessitates intelligent, adaptive, and anticipatory cybersecurity strategies. Artificial Intelligence (AI) offers a transformative approach by enabling automated threat detection, anomaly identification, and real-time incident response. This study sought to design and evaluate an AI-driven cybersecurity framework specifically for university networks… More >

  • Open Access

    REVIEW

    Next-Generation Deep Learning Approaches for Kidney Tumor Image Analysis: Challenges, Clinical Applications, and Future Perspectives

    Neethu Rose Thomas1,2, J. Anitha2, Cristina Popirlan3, Claudiu-Ionut Popirlan3, D. Jude Hemanth2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4407-4440, 2025, DOI:10.32604/cmc.2025.070689 - 23 October 2025

    Abstract Integration of artificial intelligence in image processing methods has significantly improved the accuracy of the medical diagnostics pathway for early detection and analysis of kidney tumors. Computer-assisted image analysis can be an effective tool for early diagnosis of soft tissue tumors located remotely or in inaccessible anatomical locations. In this review, we discuss computer-based image processing methods using deep learning, convolutional neural networks (CNNs), radiomics, and transformer-based methods for kidney tumors. These techniques hold significant potential for automated segmentation, classification, and prognostic estimation with high accuracy, enabling more precise and personalized treatment planning. Special focus More >

  • Open Access

    REVIEW

    Integrating AI, Blockchain, and Edge Computing for Zero-Trust IoT Security: A Comprehensive Review of Advanced Cybersecurity Framework

    Inam Ullah Khan1, Fida Muhammad Khan1,*, Zeeshan Ali Haider1, Fahad Alturise2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4307-4344, 2025, DOI:10.32604/cmc.2025.070189 - 23 October 2025

    Abstract The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges due to the scale, complexity, and heterogeneity of interconnected devices. The current traditional centralized security models are deemed irrelevant in dealing with these threats, especially in decentralized applications where the IoT devices may at times operate on minimal resources. The emergence of new technologies, including Artificial Intelligence (AI), blockchain, edge computing, and Zero-Trust-Architecture (ZTA), is offering potential solutions as it helps with additional threat detection, data integrity, and system resilience in real-time. AI offers sophisticated anomaly detection and prediction analytics, and… More >

  • Open Access

    ARTICLE

    HERL-ViT: A Hybrid Enhanced Vision Transformer Based on Regional-Local Attention for Malware Detection

    Boyan Cui1,2, Huijuan Wang1,*, Yongjun Qi1,*, Hongce Chen1, Quanbo Yuan1,3, Dongran Liu1, Xuehua Zhou1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5531-5553, 2025, DOI:10.32604/cmc.2025.070101 - 23 October 2025

    Abstract The proliferation of malware and the emergence of adversarial samples pose severe threats to global cybersecurity, demanding robust detection mechanisms. Traditional malware detection methods suffer from limited feature extraction capabilities, while existing Vision Transformer (ViT)-based approaches face high computational complexity due to global self-attention, hindering their efficiency in handling large-scale image data. To address these issues, this paper proposes a novel hybrid enhanced Vision Transformer architecture, HERL-ViT, tailored for malware detection. The detection framework involves five phases: malware image visualization, image segmentation with patch embedding, regional-local attention-based feature extraction, enhanced feature transformation, and classification. Methodologically,… More >

  • Open Access

    ARTICLE

    Robust Multi-Label Cartoon Character Classification on the Novel Kral Sakir Dataset Using Deep Learning Techniques

    Candan Tumer1, Erdal Guvenoglu2, Volkan Tunali3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5135-5158, 2025, DOI:10.32604/cmc.2025.067840 - 23 October 2025

    Abstract Automated cartoon character recognition is crucial for applications in content indexing, filtering, and copyright protection, yet it faces a significant challenge in animated media due to high intra-class visual variability, where characters frequently alter their appearance. To address this problem, we introduce the novel Kral Sakir dataset, a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions. This paper conducts a comprehensive benchmark study, evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks (CNNs), including DenseNet, ResNet, and VGG, against a custom baseline model trained More >

Displaying 1-10 on page 1 of 564. Per Page