Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (604)
  • Open Access

    REVIEW

    A Review on Fault Diagnosis Methods of Gas Turbine

    Tao Zhang1,*, Hailun Wang1, Tianyue Wang1, Tian Tian2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072696 - 12 January 2026

    Abstract The critical components of gas turbines suffer from prolonged exposure to factors such as thermal oxidation, mechanical wear, and airflow disturbances during prolonged operation. These conditions can lead to a series of issues, including mechanical faults, air path malfunctions, and combustion irregularities. Traditional model-based approaches face inherent limitations due to their inability to handle nonlinear problems, natural factors, measurement uncertainties, fault coupling, and implementation challenges. The development of artificial intelligence algorithms has provided an effective solution to these issues, sparking extensive research into data-driven fault diagnosis methodologies. The review mechanism involved searching IEEE Xplore, ScienceDirect,… More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026

    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open Access

    ARTICLE

    Advancing Breast Cancer Molecular Subtyping: A Comparative Study of Convolutional Neural Networks and Vision Transformers on Mammograms

    Chee Chin Lim1,2,*, Hui Wen Tiu1, Qi Wei Oung1,3, Chiew Chea Lau4, Xiao Jian Tan2,5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070468 - 12 January 2026

    Abstract Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity. This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks (MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparameter tuning,… More >

  • Open Access

    ARTICLE

    Beyond Wi-Fi 7: Enhanced Decentralized Wireless Local Area Networks with Federated Reinforcement Learning

    Rashid Ali1,*, Alaa Omran Almagrabi2,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070224 - 12 January 2026

    Abstract Wi-Fi technology has evolved significantly since its introduction in 1997, advancing to Wi-Fi 6 as the latest standard, with Wi-Fi 7 currently under development. Despite these advancements, integrating machine learning into Wi-Fi networks remains challenging, especially in decentralized environments with multiple access points (mAPs). This paper is a short review that summarizes the potential applications of federated reinforcement learning (FRL) across eight key areas of Wi-Fi functionality, including channel access, link adaptation, beamforming, multi-user transmissions, channel bonding, multi-link operation, spatial reuse, and multi-basic servic set (multi-BSS) coordination. FRL is highlighted as a promising framework for More >

  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 08 January 2026

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    Research on Integrating Deep Learning-Based Vehicle Brand and Model Recognition into a Police Intelligence Analysis Platform

    Shih-Lin Lin*, Cheng-Wei Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071915 - 09 December 2025

    Abstract This study focuses on developing a deep learning model capable of recognizing vehicle brands and models, integrated with a law enforcement intelligence platform to overcome the limitations of existing license plate recognition techniques—particularly in handling counterfeit, obscured, or absent plates. The research first entailed collecting, annotating, and classifying images of various vehicle models, leveraging image processing and feature extraction methodologies to train the model on Microsoft Custom Vision. Experimental results indicate that, for most brands and models, the system achieves stable and relatively high performance in Precision, Recall, and Average Precision (AP). Furthermore, simulated tests… More >

  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025

    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

  • Open Access

    ARTICLE

    MultiAgent-CoT: A Multi-Agent Chain-of-Thought Reasoning Model for Robust Multimodal Dialogue Understanding

    Ans D. Alghamdi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-35, 2026, DOI:10.32604/cmc.2025.071210 - 09 December 2025

    Abstract Multimodal dialogue systems often fail to maintain coherent reasoning over extended conversations and suffer from hallucination due to limited context modeling capabilities. Current approaches struggle with cross-modal alignment, temporal consistency, and robust handling of noisy or incomplete inputs across multiple modalities. We propose MultiAgent-Chain of Thought (CoT), a novel multi-agent chain-of-thought reasoning framework where specialized agents for text, vision, and speech modalities collaboratively construct shared reasoning traces through inter-agent message passing and consensus voting mechanisms. Our architecture incorporates self-reflection modules, conflict resolution protocols, and dynamic rationale alignment to enhance consistency, factual accuracy, and user engagement. More >

  • Open Access

    REVIEW

    Artificial Intelligence Design of Sustainable Aluminum Alloys: A Review

    Zhijie Lin1, Chao Yang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-33, 2026, DOI:10.32604/cmc.2025.070735 - 09 December 2025

    Abstract Sustainable aluminum alloys, renowned for their lower energy consumption and carbon emissions, present a critical path towards a circular materials economy. However, their design is fraught with challenges, including complex performance variability due to impurity elements and the time-consuming, cost-prohibitive nature of traditional trial-and-error methods. The high-dimensional parameter space in processing optimization and the reliance on human expertise for quality control further complicate their development. This paper provides a comprehensive review of Artificial Intelligence (AI) techniques applied to sustainable aluminum alloy design, analyzing their methodologies and identifying key challenges and optimization strategies. We review how… More >

Displaying 1-10 on page 1 of 604. Per Page