Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (287)
  • Open Access

    ARTICLE

    Efficient Malicious QR Code Detection System Using an Advanced Deep Learning Approach

    Abdulaziz A. Alsulami1, Qasem Abu Al-Haija2,*, Badraddin Alturki3, Ayman Yafoz1, Ali Alqahtani4, Raed Alsini1, Sami Saeed Binyamin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1117-1140, 2025, DOI:10.32604/cmes.2025.070745 - 30 October 2025

    Abstract QR codes are widely used in applications such as information sharing, advertising, and digital payments. However, their growing adoption has made them attractive targets for malicious activities, including malware distribution and phishing attacks. Traditional detection approaches rely on URL analysis or image-based feature extraction, which may introduce significant computational overhead and limit real-time applicability, and their performance often depends on the quality of extracted features. Previous studies in malicious detection do not fully focus on QR code security when combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs). This research proposes a deep learning… More >

  • Open Access

    ARTICLE

    Grid-Supplied Load Prediction under Extreme Weather Conditions Based on CNN-BiLSTM-Attention Model with Transfer Learning

    Qingliang Wang1, Chengkai Liu1, Zhaohui Zhou1, Ye Han1, Luebin Fang2, Moxuan Zhao3, Xiao Cao3,*

    Energy Engineering, Vol.122, No.11, pp. 4715-4732, 2025, DOI:10.32604/ee.2025.068105 - 27 October 2025

    Abstract Grid-supplied load is the traditional load minus new energy generation, so grid-supplied load forecasting is challenged by uncertainties associated with the total energy demand and the energy generated off-grid. In addition, with the expansion of the power system and the increase in the frequency of extreme weather events, the difficulty of grid-supplied load forecasting is further exacerbated. Traditional statistical methods struggle to capture the dynamic characteristics of grid-supplied load, especially under extreme weather conditions. This paper proposes a novel grid-supplied load prediction model based on Convolutional Neural Network-Bidirectional LSTM-Attention mechanism (CNN-BiLSTM-Attention). The model utilizes transfer… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Optimized VMD and LSTM

    Xinjian Li1, Yu Zhang1,2,*, Zewen Wang1, Zhenyun Song1

    Energy Engineering, Vol.122, No.11, pp. 4603-4619, 2025, DOI:10.32604/ee.2025.065799 - 27 October 2025

    Abstract Power prediction has been critical in large-scale wind power grid connections. However, traditional wind power prediction methods have long suffered from problems, for instance low prediction accuracy and poor reliability. For this purpose, a hybrid prediction model (VMD-LSTM-Attention) has been proposed, which integrates the variational modal decomposition (VMD), the long short-term memory (LSTM), and the attention mechanism (Attention), and has been optimized by improved dung beetle optimization algorithm (IDBO). Firstly, the algorithm’s performance has been significantly enhanced through the implementation of three key strategies, namely the elite group strategy of the Logistic-Tent map, the nonlinear… More >

  • Open Access

    ARTICLE

    Prediction of Landslide Displacement Using a BiLSTM-RBF Model Based on a Hybrid Attention Mechanism

    Jiao Chen1, Xiao Wang1,*, Zhiqin He1, Yi Chen2, Chao Ma1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5423-5450, 2025, DOI:10.32604/cmc.2025.067952 - 23 October 2025

    Abstract This research proposes an innovative solution to the inherent challenges faced by landslide displacement prediction models based on data-driven methods, such as the need for extensive historical datasets for training, the reliance on manual feature selection, and the difficulty in effectively utilizing landslide historical data. We have developed a dual-channel deep learning prediction model that integrates multimodal decomposition and an attention mechanism to overcome these challenges and improve prediction performance. The proposed methodology follows a three-stage framework: (1) Empirical Mode Decomposition (EMD) effectively segregates cumulative displacement and feature factors; (2) We have developed a Double… More >

  • Open Access

    ARTICLE

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

    Seunghwan Seo1,2,*, Moonkyung Chung1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2893-2922, 2025, DOI:10.32604/cmes.2025.069668 - 30 September 2025

    Abstract Excavation-induced deformations of earth-retaining walls (ERWs) can critically affect the safety of surrounding structures, highlighting the need for reliable prediction models to support timely decision-making during construction. This study utilizes traditional statistical ARIMA (Auto-Regressive Integrated Moving Average) and deep learning-based LSTM (Long Short-Term Memory) models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models. The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time, whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within… More > Graphic Abstract

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

  • Open Access

    ARTICLE

    An Efficient Deep Learning-Based Hybrid Framework for Personality Trait Prediction through Behavioral Analysis

    Nareshkumar Raveendhran, Nimala Krishnan*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3253-3265, 2025, DOI:10.32604/cmc.2025.067490 - 23 September 2025

    Abstract Social media outlets deliver customers a medium for communication, exchange, and expression of their thoughts with others. The advent of social networks and the fast escalation of the quantity of data have created opportunities for textual evaluation. Utilising the user corpus, characteristics of social platform users, and other data, academic research may accurately discern the personality traits of users. This research examines the traits of consumer personalities. Usually, personality tests administered by psychological experts via interviews or self-report questionnaires are costly, time-consuming, complex, and labour-intensive. Currently, academics in computational linguistics are increasingly focused on predicting… More >

  • Open Access

    ARTICLE

    Robust False Data Injection Identification Framework for Power Systems Using Explainable Deep Learning

    Ghadah Aldehim, Shakila Basheer, Ala Saleh Alluhaidan, Sapiah Sakri*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3599-3619, 2025, DOI:10.32604/cmc.2025.065643 - 23 September 2025

    Abstract Although digital changes in power systems have added more ways to monitor and control them, these changes have also led to new cyber-attack risks, mainly from False Data Injection (FDI) attacks. If this happens, the sensors and operations are compromised, which can lead to big problems, disruptions, failures and blackouts. In response to this challenge, this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory (Bi-LSTM) networks and employs explanatory methods from Artificial Intelligence (AI). Not only does the suggested architecture detect potential fraud with high accuracy, but it also… More >

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Temporal Attention LSTM Network for NGAP Anomaly Detection in 5GC Boundary

    Shaocong Feng, Baojiang Cui*, Shengjia Chang, Meiyi Jiang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2567-2590, 2025, DOI:10.32604/cmes.2025.067326 - 31 August 2025

    Abstract Service-Based Architecture (SBA) of 5G network introduces novel communication technology and advanced features, while simultaneously presenting new security requirements and challenges. Commercial 5G Core (5GC) networks are highly secure closed systems with interfaces defined through the 3rd Generation Partnership Project (3GPP) specifications to fulfill communication requirements. However, the 5GC boundary, especially the access domain, faces diverse security threats due to the availability of open-source cellular software suites and Software Defined Radio (SDR) devices. Therefore, we systematically summarize security threats targeting the N2 interfaces at the 5GC boundary, which are categorized as Illegal Registration, Protocol attack,… More >

Displaying 1-10 on page 1 of 287. Per Page