Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Securing IoT Ecosystems: Experimental Evaluation of Modern Lightweight Cryptographic Algorithms and Their Performance

    Mircea Ţălu1,2,*

    Journal of Cyber Security, Vol.7, pp. 565-587, 2025, DOI:10.32604/jcs.2025.073690 - 11 December 2025

    Abstract The rapid proliferation of Internet of Things (IoT) devices has intensified the demand for cryptographic solutions that balance security, performance, and resource efficiency. However, existing studies often focus on isolated algorithmic families, lacking a comprehensive structural and experimental comparison across diverse lightweight cryptographic designs. This study addresses that gap by providing an integrated analysis of modern lightweight cryptographic algorithms spanning six structural classes—Substitution–Permutation Network (SPN), Feistel Network (FN), Generalized Feistel Network (GFN), Addition–Rotation–XOR (ARX), Nonlinear Feedback Shift Register (NLFSR), and Hybrid models—evaluated on resource-constrained IoT platforms. The key contributions include: (i) establishing a unified benchmarking… More >

  • Open Access

    ARTICLE

    Dynamic Session Key Allocation with Time-Indexed Ascon for Low-Latency Cloud-Edge-End Communication

    Fang-Yie Leu1, Kun-Lin Tsai2,*, Li-Woei Chen3, Deng-Yao Yao2, Jian-Fu Tsai2, Ju-Wei Zhu2, Guo-Wei Wang2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1937-1957, 2025, DOI:10.32604/cmc.2025.068486 - 29 August 2025

    Abstract With the rapid development of Cloud-Edge-End (CEE) computing, the demand for secure and lightweight communication protocols is increasingly critical, particularly for latency-sensitive applications such as smart manufacturing, healthcare, and real-time monitoring. While traditional cryptographic schemes offer robust protection, they often impose excessive computational and energy overhead, rendering them unsuitable for use in resource-constrained edge and end devices. To address these challenges, in this paper, we propose a novel lightweight encryption framework, namely Dynamic Session Key Allocation with Time-Indexed Ascon (DSKA-TIA). Built upon the NIST-endorsed Ascon algorithm, the DSKA-TIA introduces a time-indexed session key generation mechanism… More >

  • Open Access

    ARTICLE

    Improving Smart Home Security via MQTT: Maximizing Data Privacy and Device Authentication Using Elliptic Curve Cryptography

    Zainatul Yushaniza Mohamed Yusoff1, Mohamad Khairi Ishak2,*, Lukman A. B. Rahim3, Mohd Shahrimie Mohd Asaari1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1669-1697, 2024, DOI:10.32604/csse.2024.056741 - 22 November 2024

    Abstract The rapid adoption of Internet of Things (IoT) technologies has introduced significant security challenges across the physical, network, and application layers, particularly with the widespread use of the Message Queue Telemetry Transport (MQTT) protocol, which, while efficient in bandwidth consumption, lacks inherent security features, making it vulnerable to various cyber threats. This research addresses these challenges by presenting a secure, lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things (IoT) networks. The proposed solution builds upon the Dang-Scheme, a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it… More >

  • Open Access

    ARTICLE

    TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection

    Isha Sood*, Varsha Sharma

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2791-2818, 2024, DOI:10.32604/cmc.2024.055463 - 18 November 2024

    Abstract Ransomware has emerged as a critical cybersecurity threat, characterized by its ability to encrypt user data or lock devices, demanding ransom for their release. Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases, rendering them less effective against evolving ransomware families. This paper introduces TLERAD (Transfer Learning for Enhanced Ransomware Attack Detection), a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains, enabling robust detection of both known and unknown ransomware variants. The proposed method More >

  • Open Access

    ARTICLE

    Metaheuristic Lightweight Cryptography for Security Enhancement inInternet of Things

    Mahmoud Ragab1,2,3,*, Ehab Bahaudien Ashary4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3009-3023, 2022, DOI:10.32604/cmc.2022.025763 - 29 March 2022

    Abstract The advancements made in Internet of Things (IoT) is projected to alter the functioning of healthcare industry in addition to increased penetration of different applications. However, data security and private are challenging tasks to accomplish in IoT and necessary measures to be taken to ensure secure operation. With this background, the current paper proposes a novel lightweight cryptography method for enhance the security in IoT. The proposed encryption algorithm is a blend of Cross Correlation Coefficient (CCC) and Black Widow Optimization (BWO) algorithm. In the presented encryption technique, CCC operation is utilized to optimize the… More >

  • Open Access

    ARTICLE

    Blockchain Enabled Optimal Lightweight Cryptography Based Image Encryption Technique for IIoT

    R. Bhaskaran1, R. Karuppathal1, M. Karthick2, J. Vijayalakshmi3, Seifedine Kadry4, Yunyoung Nam5,*

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1593-1606, 2022, DOI:10.32604/iasc.2022.024902 - 24 March 2022

    Abstract Industrial Internet of Things (IIoT) and Industry 4.0/5.0 offer several interconnections between machinery, equipment, processes, and personnel in diverse application areas namely logistics, supply chain, manufacturing, transportation, and healthcare. The conventional security-based solutions in IIoT environment get degraded due to the third parties. Therefore, the recent blockchain technology (BCT) can be employed to resolve trust issues and eliminate the need for third parties. Therefore, this paper presents a novel blockchain enabled secure optimal lightweight cryptography based image encryption (BC-LWCIE) technique for industry 4.0 environment. In addition, the BC-LWCIE technique involves the design of an optimal More >

  • Open Access

    ARTICLE

    Low Area PRESENT Cryptography in FPGA Using TRNG-PRNG Key Generation

    T. Kowsalya1, R. Ganesh Babu2, B. D. Parameshachari3, Anand Nayyar4, Raja Majid Mehmood5,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1447-1465, 2021, DOI:10.32604/cmc.2021.014606 - 13 April 2021

    Abstract Lightweight Cryptography (LWC) is widely used to provide integrity, secrecy and authentication for the sensitive applications. However, the LWC is vulnerable to various constraints such as high-power consumption, time consumption, and hardware utilization and susceptible to the malicious attackers. In order to overcome this, a lightweight block cipher namely PRESENT architecture is proposed to provide the security against malicious attacks. The True Random Number Generator-Pseudo Random Number Generator (TRNG-PRNG) based key generation is proposed to generate the unpredictable keys, being highly difficult to predict by the hackers. Moreover, the hardware utilization of PRESENT architecture is… More >

Displaying 1-10 on page 1 of 7. Per Page