Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    Recent Developments in Oscillatory Marangoni Convection

    Y. Kamotani1, S. Matsumoto2, S. Yoda2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.2, pp. 147-160, 2007, DOI:10.3970/fdmp.2007.003.147

    Abstract A Marangoni Convection Modeling Research group was formed in Japan in order to investigate oscillatory thermocapillary flow systematically over a wide range of Prandtl number (Pr). The research by the group represents the current status of the subject. The present article reports the work done by the group members. The work is divided into three Pr ranges (low, medium and high) because the cause of oscillations is different in each range. For the low-Pr case, the transition to oscillatory flow is preceded by a steady bifurcation to three-dimensional convection. For the first time an experimental proof of this first transition… More >

  • Open Access

    ARTICLE

    Numerical Study of Liquid Metal Flow in a Rectangular Duct under the Influence of a Heterogeneous Magnetic Field

    Evgeny V. Votyakov1, Egbert A. Zienicke1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.2, pp. 97-114, 2007, DOI:10.3970/fdmp.2007.003.097

    Abstract We simulated numerically the laminar flow in the geometry and the magnetic field of the experimental channel used in [Andreev, Kolesnikov, and Thess (2006)]. This provides detailed information about the electric potential distribution for the laminar regime (numerical simulation) and in the turbulent regime as well (experiment). As follows from comparison of simulated and experimental results, the flow under the magnet is determined by the interaction parameter N = Ha2 / Re representing the ratio between magnetic force, determined by the Hartmann number Ha, and inertial force, determined by the Reynolds number Re. We compared two variants: (i)(Re,N)=(2000,18.6) (experiment), (400,20.25)… More >

  • Open Access

    ARTICLE

    Liquid Particles Tracing in Three-dimensional Buoyancy-driven Flows

    D. E. Melnikov1, V. M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 189-200, 2005, DOI:10.3970/fdmp.2005.001.189

    Abstract Buoyancy-driven convective flows are numerically analyzed in a cubic enclosure, containing a liquid subjected to a temperature difference between opposite lateral walls; all other walls are thermally insulated. The stationary gravity vector is perpendicular to the applied temperature gradient. The steady flow patterns are investigated within the framework of a liquid particles tracing technique. Three tracing techniques are compared: the first, based on a trilinear interpolation of the liquid velocity defined on the computational grid and an eighth order in time Runge-Kutta method; the second and the third, using a resampling the velocity field on a new approximately twice finer… More >

  • Open Access

    ARTICLE

    Ab Initio Molecular-Dynamics Simulation Liquid and Amorphous Al94-xNi6Lax (x=3-9) Alloys

    Lu Wang1,2, Cuihhong Yang2, Tong Liu3, Hongyan Wu2,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 757-765, 2019, DOI:10.32604/cmc.2019.04499

    Abstract Ab initio molecular-dynamics simulations have been used to investigate the liquid and amorphous Al94-xNi6Lax (x=3-9) alloys. Through calculating the pair distribution functions and partial coordination numbers, the structure and properties of these alloys are researched, which will help the design bulk metallic glass. The concentration of La atoms can affect the short-range order of Al94-xNi6Lax alloys, which is also studied in this calculation result. More >

  • Open Access

    ARTICLE

    Nanobubbles at Water-Solid Interfaces: Calculation of the Contact Angle Based on a Simple Model

    H. Elnaiem1, D. Casimir1, P. Misra1, S.M. Gatica1,2

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 23-34, 2009, DOI:10.3970/cmc.2009.014.023

    Abstract Nanobubbles have been found to form at the interface of water and solid surfaces. We examine the conditions for such bubbles to form and estimate the pressure inside the bubble based on thermodynamic considerations. Using a simple model we calculate the contact angle for a wide range of temperatures and hypothetical substrates possessing a continuous range of strengths. We show that as the temperature increases the shape of a bubble changes continuously from a spherical cap with low curvature to a complete sphere. An equivalent effect results from either increasing the strength of the solid or decreasing the surface tension.… More >

  • Open Access

    ARTICLE

    Modelling of Evaporative Cooling of Porous Medium Filled with Evaporative Liquid

    D.P.Mondal1, S.Das1, Anshul Badkul1, Nidhi Jha1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 115-134, 2009, DOI:10.3970/cmc.2009.013.115

    Abstract The cooling effect by evaporative liquid is modeled by considering that heat is transferred from the system to the surrounding due to evaporation of liquid through the pores present in the medium. The variation of cooling rate with cell size, volume fraction of pores and physical conditions has been analyzed. The model demonstrates that it increases with increase in thickness of the foam slab and with increase in velocity of air. It is also observed that cooling effect decreases with decrease in volume fraction of porosity and with increase in relative density, cell size, thermal conductivity and relative humidity. More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles molecular dynamics (FPMD) technique… More >

Displaying 171-180 on page 18 of 177. Per Page