Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (208)
  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Liquid Cooling Flow Space on the Assessment of Thermal Management of PEMFC

    Abubakar Unguwanrimi Yakubu1,2,4, Jiahao Zhao1, Qi Jiang1, Xuanhong Ye1, Junyi Liu1, Qinglong Yu1, Shusheng Xiong1,3,4,*

    Energy Engineering, Vol.122, No.3, pp. 1025-1051, 2025, DOI:10.32604/ee.2025.057680 - 07 March 2025

    Abstract This study uses numerical simulations of liquid cooling flow fields to investigate polymer exchange membrane fuel cell (PEMFC) thermal control. The research shows that the optimum cooling channel design significantly reduces the fuel cell’s temperature differential, improving overall efficiency. Specifically, the simulations show a reduction in the maximum temperature by up to 15% compared to traditional designs. Additionally, according to analysis, the Nusselt number rises by 20% with the implementation of serpentine flow patterns, leading to enhanced heat transfer rates. The findings demonstrate that effective cooling strategies can lead to a 10% increase in fuel More >

  • Open Access

    ARTICLE

    Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling

    Hongkun Lu1,2,*, M. M. Noor2,3,4,*, K. Kadirgama2

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 299-324, 2025, DOI:10.32604/fhmt.2024.059871 - 26 February 2025

    Abstract To improve the thermal performance and temperature uniformity of battery pack, this paper presents a novel battery thermal management system (BTMS) that integrates oscillating heat pipe (OHP) technology with liquid cooling. The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser, enabling dual heat transfer pathways through liquid cooling plate and OHP. This study experimentally investigates the performance characteristics of the ⊥-shaped OHP and hybrid BTMS. Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability, with optimal… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-LiquId Flow in a Horizontal Elbow

    Lihui Ma1, Wei Li1, Yuanyuan Wang1, Pan Zhang1, Lina Wang1, Xinying Liu1, Meiqin Dong2, Xuewen Cao2, Jiang Bian3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 107-119, 2025, DOI:10.32604/fdmp.2024.058295 - 24 January 2025

    Abstract Gas-liquid flow (GLF), especially slug and annular flows in oil and gas gathering and transportation pipelines, become particularly complex inside elbows and can easily exacerbate pipeline corrosion and damage. In this study, FLUENT was used to conduct 3D simulations of slug and annular flow in elbows for different velocities to assess the ensuing changes in terms of pressure. In particular, the multifluid VOF (Volume of Fraction) model was chosen. The results indicate that under both slug and annular flow conditions, the pressure inside the elbow is lower than the outside. As the superficial velocity More >

  • Open Access

    ARTICLE

    Stability of a Viscous Liquid Film in a Rotating Cylindrical Cavity under Angular Vibrations

    Victor Kozlov1,*, Alsu Zimasova1, Nikolai Kozlov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2693-2707, 2024, DOI:10.32604/fdmp.2024.052398 - 23 December 2024

    Abstract The behavior of a viscous liquid film on the wall of a rapidly rotating cylinder subjected to angular vibrations is experimentally studied. The cavity is filled with an immiscible low-viscosity liquid of lower density. In the absence of vibrations, the high viscosity liquid covers the inner surface of the cylinder with a relatively thin axisymmetric film; the low-viscosity liquid is located in the cavity interior. It is found that with an increase in the amplitude of rotational vibrations, the axisymmetric interphase boundary loses stability. An azimuthally periodic 2D “frozen wave” appears on the film surface… More >

  • Open Access

    ARTICLE

    Contact Melting in an Elliptical Tube under the Second Kind of Thermal Boundary Condition

    Wenzhen Chen, Junjie Ma*, Jianli Hao

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1823-1837, 2024, DOI:10.32604/fhmt.2024.057896 - 19 December 2024

    Abstract The contact melting process of solid phase change material (PCM) has essential applications in some energy storage systems, which is related closely to the heat resource’s geometry and thermal boundary conditions. The contact melting of PCM in a horizontal elliptical tube under the second kind of thermal boundary condition, namely the constant surface heat flux, was investigated analytically. The analysis model is proposed based on the contact melting lubrication theory, and the model deduces the basic dimensionless equations. The variation rules of parameters such as contact melting speed, melting completion time, and boundary layer thickness More >

  • Open Access

    ARTICLE

    The Hydrodynamic Crisis of Nucleate Boiling in a Horizontal Thin Layer of Dielectric Liquid HFE-7100

    V. I. Zhukov1,2,*, A. N. Pavlenko1

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1761-1775, 2024, DOI:10.32604/fhmt.2024.056779 - 19 December 2024

    Abstract The results of an experimental study on critical heat fluxes (CHF) during the nucleate boiling of the HFE-7100 dielectric liquid in horizontal layers of different heights at atmospheric pressure are presented. The existence of a critical layer height has been established. In layers above the critical layer height, a hydrodynamic boiling crisis occurs; in thinner layers, a surface drying crisis occurs. At a layer height equal to the critical value, a dry spot first appears, followed by transition boiling, which gradually spreads to the entire heating surface. In these experiments, the critical layer height was More >

  • Open Access

    PROCEEDINGS

    3D Printing of Bioinspired Capillary Transistors

    Ming Gao1, Kun Zhou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013398

    Abstract Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil–water separation [1-3]. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (< 30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by three-dimensional (3D) printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the More >

  • Open Access

    ARTICLE

    Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe with Merged Liquid Slugs

    Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1381-1397, 2024, DOI:10.32604/fhmt.2024.056624 - 30 October 2024

    Abstract Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe (PHP). The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 and a height of 1.1 . The evaporator and condenser sections were 25 and 50 long, respectively, and the adiabatic section in between was 75 mm long. Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene, the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP. The PHP was charged with hydrofluoroether-7100.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, He Lu, Shijie Feng

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1493-1514, 2024, DOI:10.32604/fhmt.2024.055324 - 30 October 2024

    Abstract Helically coiled tube-in-tube (HCTT) heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency. HCTT heat exchangers play an important role in liquified natural gas (LNG) use and cold energy recovery. The heat transfer characteristics, pressure distribution, and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated. By comparing the simulation results of the computational model with existing experimental results, the effectiveness of the computational model is verified. The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related… More >

  • Open Access

    ARTICLE

    Magneto-Hydro-Convective Nanofluid Flow in Porous Square Enclosure

    B. Ould Said1, F. Mebarek-Oudina2,*, M. A. Medebber3

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1343-1360, 2024, DOI:10.32604/fhmt.2024.054164 - 30 October 2024

    Abstract In this work, a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed. The nanoliquid flow is designated utilizing the Brinkman-Forchheimer model. The upper and the bottom horizontal walls are considered to be hot (Th) and cold temperature (Tc), respectively, whereas the other walls are thermally insulated. The impact of various dimensionless terms such as the Grashof number (Gr) in the ranges (0.01–20), the Reynolds number (Re) in the ranges (50–500), the Hartman number (Ha) in the ranges (0–20), and three different location cases (0.25, 0.5, and More >

Displaying 1-10 on page 1 of 208. Per Page