Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (234)
  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part I—First-Order Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2673-2700, 2025, DOI:10.32604/fdmp.2025.069719 - 01 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have attracted significant research interest; however, overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads. In particular, it remains unclear whether the water in aqueducts—common water-diversion structures in many countries—can serve as an effective TLD. This study investigates the generation mechanisms of sloshing loads during the first-order transverse resonance of water in a U-shaped aqueduct using a two-dimensional (2D) numerical model. The results reveal that, at the equilibrium position, the free surface difference between the left and right walls, the horizontal force… More >

  • Open Access

    ARTICLE

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

    Si-Kai Wang1, Ti-Cai Wang1, Di-Fei Yi2, Jia Rui3, Peng-Fei Cao4, Hua-Ping Wang1,5,*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1411-1432, 2025, DOI:10.32604/sdhm.2025.070034 - 17 November 2025

    Abstract As a key storage facility, the structural safety of large oil tanks is directly related to the stable operation of the energy system. The static pressure caused by the change of liquid level is one of the main loads in the service process of storage tanks, which determines the structural deformation and damage risk. To explore the structural deformation properties under the change of liquid levels and provide a theoretical basis for the prevention and control of damage risk, this paper systematically analyzes the mechanical response of storage tanks under the pressures induced by different… More > Graphic Abstract

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

  • Open Access

    PROCEEDINGS

    Perpendicular Separations of a Binary Mixture Under Van Der Waals Confinement

    Kui Lin*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011838

    Abstract The phase separation of confined polymeric mixtures plays a critical role in the design of advanced materials and nanoscale devices. Over the past decades, extensive studies have highlighted the interplay of wetting dynamics, hydrodynamics, and interfacial forces in governing phase separation under confinement. In this work [1], we employ molecular dynamics simulations to investigate the dynamics of a binary mixture confined by van der Waals (vdW) walls, revealing a novel phenomenon termed Perpendicular Separation of Two Phases (PSTP). In the initial stage, water molecules residing in the central region rapidly diffuse and condense symmetrically along… More >

  • Open Access

    ARTICLE

    Numerical Modeling of Bubble-Particle Attachment in a Volume-of-Fluid Framework

    Hojun Moon, Donghyun You*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 367-390, 2025, DOI:10.32604/cmes.2025.071648 - 30 October 2025

    Abstract A numerical method is presented to simulate bubble–particle interaction phenomena in particle-laden flows. The bubble surface is represented in an Eulerian framework by a volume-of-fluid (VOF) method, while particle motions are predicted in a Lagrangian framework. Different frameworks for describing bubble surfaces and particles make it difficult to predict the exact locations of collisions between bubbles and particles. An effective bubble, defined as having a larger diameter than the actual bubble represented by the VOF method, is introduced to predict the collision locations. Once the collision locations are determined, the attachment of particles to the More >

  • Open Access

    PROCEEDINGS

    Transmission Characteristics in Solid-Liquid Phase changing Metamaterials

    Junyi Xiang1,2,3, Yijun Chai1,2,3,*, Xiongwei Yang1,2,3, Yueming Li1,2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011738

    Abstract Acoustic metamaterials have garnered significant attention in recent years due to their potential to manipulate sound waves and the ability to dynamically adjust the bandgap of such materials is particularly crucial.
    This work investigates the influence mechanisms of solid-liquid phase change processes on the performance of metamaterials, which is a significant research focus in the field of acoustic metamaterials. The primary objective is to explore the mechanisms governing the controllable shifting of bandgaps through phase change processes. By utilizing solid-liquid phase change materials as scattering bodies, numerical methods were employed to calculate the band structure and… More >

  • Open Access

    ARTICLE

    Innovative Dual Two-Phase Cooling System for Thermal Management of Electric Vehicle Batteries Using Dielectric Fluids and Pulsating Heat Pipes

    Federico Sacchelli1, Luca Cattani1,2, Matteo Malavasi1, Fabio Bozzoli1,2,*, Corrado Sciancalepore1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1351-1364, 2025, DOI:10.32604/fhmt.2025.064154 - 31 October 2025

    Abstract This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles (EVs). The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes (PHPs), in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration. Experimental evaluations conducted under different discharge conditions demonstrate that the system effectively maintains battery temperatures within the optimal range of 20–40°C, with enhanced temperature uniformity and stability. While the PHP exhibited minimal impact at low power, its role More >

  • Open Access

    ARTICLE

    Influence Mechanism of the Nano-Structure on Phase Change Liquid Cooling Features for Data Centers

    Yifan Li*, Congzhe Zhu, Rong Gao*, Bin Yang

    Energy Engineering, Vol.122, No.11, pp. 4523-4539, 2025, DOI:10.32604/ee.2025.068480 - 27 October 2025

    Abstract The local overheating issue is a serious threat to the safe operation of data centers (DCs). The chip-level liquid cooling with pool boiling is expected to solve this problem. The effect of nano configuration and surface wettability on the boiling characteristics of copper surfaces is studied using molecular dynamics (MD) simulation. The argon is chosen as the coolant, and the wall temperature is 300 K. The main findings and innovations are as follows. (1) Compared to the smooth surface and fin surface, the cylindrical nano cavity obtains the superior boiling performance with earlier onset of… More > Graphic Abstract

    Influence Mechanism of the Nano-Structure on Phase Change Liquid Cooling Features for Data Centers

  • Open Access

    PROCEEDINGS

    Comparative Study on Thermodynamic Models of Liquid Hydrogen Storage Tanks

    Yanfeng Li1, Dongxu Han1,*, Jinhui Lin2, Qingwei Zhai3, Xiaohua Wu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011547

    Abstract Liquid hydrogen (LH2), with its high volumetric energy density and high purity, has become a promising choice for hydrogen storage. As the demand for hydrogen as a clean energy source continues to grow, the importance of liquid hydrogen in energy storage is becoming increasingly significant. However, the safe operation and storage of liquid hydrogen face several challenges, particularly the self-pressurization process within storage tanks. During storage, heat ingress into the tank causes the evaporation of liquid hydrogen, leading to a continuous rise in vapor pressure, resulting in self-pressurization. Accurately predicting this process is crucial for… More >

  • Open Access

    ARTICLE

    A Numerical Study of Fluid Velocity and Temperature Distribution in Regenerative Cooling Channels for Liquid Rocket Engines

    Liang Yin1,*, Huanqi Zhang2, Jie Ding1, Mehdi Khan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1861-1873, 2025, DOI:10.32604/fdmp.2025.064187 - 12 September 2025

    Abstract In liquid rocket engines, regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads. However, non-uniform coolant flow distribution within the cooling channels often leads to localized overheating, posing serious risks to engine reliability and operational lifespan. This study employs a three-dimensional fluid–thermal coupled numerical model to systematically investigate the influence of geometric parameters—specifically the number of inlets, the number of channels, and inlet manifold configurations—on flow uniformity and thermal distribution in non-pyrolysis zones. Key findings reveal that increasing the number of inlets from one to three significantly enhances flow uniformity, reducing… More >

  • Open Access

    ARTICLE

    Seismic Vibration Control of Wind Turbine Towers with Bidirectional Tuned Bellow Liquid Column Damper

    Xiwei Wang1, Wanrun Li1,2,3,*, Wenhai Zhao1, Yining Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1241-1263, 2025, DOI:10.32604/sdhm.2025.063736 - 05 September 2025

    Abstract To address the vibration issues of wind turbine towers, this paper proposes a bidirectional tuned bellow liquid column damper (BTBLCD). The configuration of the proposed BTBLCD is first described in detail, and its energy dissipation mechanism is derived through theoretical analysis. A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed. The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations. Finally, a 1/10 scaled model of the wind turbine tower is constructed, and the energy dissipation performance of the… More >

Displaying 1-10 on page 1 of 234. Per Page