Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (212)
  • Open Access

    PROCEEDINGS

    Explore Wetting Dynamics at Micro and Nano Scales: Applications and Progress of Long-Needle Atomic Force Microscope

    Dongshi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011291

    Abstract Contact line pinning and the corresponding contact angle hysteresis (CAH) are important interfacial phenomena that occur in nature and play a significant role in many industrial processes, such as surface coating, ink-jet printing, and immersion lithography. Traditional optical methods face limitations due to the optical diffraction limit, making it difficult to directly measure flow and interface phenomena at the micro- or nanoscale. However, atomic force microscopy (AFM) offers a solution by enabling precise manipulation and force measurements at micro and nano scales. The AFM-based microrheometer, which is assembled with a long-needle probe, can be used More >

  • Open Access

    PROCEEDINGS

    Numerical Study on the Sloshing and Thermodynamic Characteristics of Liquid Hydrogen Storage Tank in Hydrogen-Powered Aircraft

    Zhibo Chen1, Jingfa Li1,*, Bo Yu1, Jianli Li1, Wei Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011004

    Abstract Using liquid hydrogen as fuel is helpful to the aviation industry to achieve the goal of carbon peak and carbon neutrality. However, the liquid hydrogen storage tank will inevitably slosh during the use inhydrogen-powered aircraft, thus it is necessary to study the thermodynamic characteristics of liquid hydrogen storage tank during the sloshing process. In this paper, the thermodynamic behavior of liquid hydrogen storage tank under external excitation is studied by using Volume of Fluid(VOF) model and Lee model through numerical simulation methods. The changes of pressure and temperature in the process of tank sloshing under… More >

  • Open Access

    ARTICLE

    Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid

    Aline Ferreira Knihs, Larissa Klen Aragão, Miguel Angelo Granato, Andrea Cristiane Krause Bierhalz*, Rita de Cassia Siqueira Curto Valle

    Journal of Renewable Materials, Vol.12, No.9, pp. 1557-1571, 2024, DOI:10.32604/jrm.2024.052963 - 25 September 2024

    Abstract The textile industry generates large volumes of waste throughout its production process. Most of this waste is colored, therefore, discoloration is an important step toward recycling and reusing this waste. This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye. The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers. The concentration of the alkaline agent was not significant in the process. The optimization of the reaction conditions lead to Berger… More > Graphic Abstract

    Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid

  • Open Access

    ARTICLE

    The Disintegration of a Floating Ferrofluid Layer into an Ordered Drop System in a Vertical Magnetic Field

    Christina Khokhryakova1,*, Konstantin Kostarev2, Irina Mizeva3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2205-2218, 2024, DOI:10.32604/fdmp.2024.051053 - 23 September 2024

    Abstract Magnetic fluids, also known as ferrofluids, are versatile functional materials with a wide range of applications. These applications span from industrial uses such as vacuum seals, actuators, and acoustic devices to medical uses, including serving as contrast agents for magnetic resonance imaging (MRI), delivering medications to specific locations within the body, and magnetic hyperthermia for cancer treatment. The use of a non-wettable immiscible liquid substrate to support a layer of magnetic fluid opens up new possibilities for studying various fluid flows and related instabilities in multi-phase systems with both a free surface and an interface.… More > Graphic Abstract

    The Disintegration of a Floating Ferrofluid Layer into an Ordered Drop System in a Vertical Magnetic Field

  • Open Access

    ARTICLE

    Vibrational Suspension of Two Cylinders in a Rotating Liquid-Filled Cavity with a Time-Varying Rotation Rate

    Olga Vlasova*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2127-2137, 2024, DOI:10.32604/fdmp.2024.051202 - 23 August 2024

    Abstract The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology. The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types. Controlling inclusions is of current interest for space technologies. In low gravity, even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary. When vibrations are applied to multiphase hydrodynamic systems, the oscillating body intensively interacts with the fluid and introduces changes in… More >

  • Open Access

    ARTICLE

    A Novel Model for the Prediction of Liquid Film Thickness Distribution in Pipe Gas-Liquid Flows

    Yubo Wang1,2,*, Yanan Yu1,2, Qiming Wang3, Anxun Liu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1993-2006, 2024, DOI:10.32604/fdmp.2024.049510 - 23 August 2024

    Abstract A model is proposed for liquid film profile prediction in gas-liquid two-phase flow, which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction. A two-fluid model is used to calculate both gas and liquid phases’ flow characteristics. The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced. Moreover, energy conservation is applied for obtaining the liquid film thickness distribution along the circumference. Liquid film thickness distribution is calculated accordingly for different cases; its values are compared More >

  • Open Access

    ARTICLE

    A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow

    Tiantian Yu1, Youping Lv1, Hao Zhong2, Ming Liu1, Pingyuan Gai1, Zeju Jiang1, Peng Zhang1, Xingkai Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1759-1772, 2024, DOI:10.32604/fdmp.2024.049035 - 06 August 2024

    Abstract A new measurement device, consisting of swirling blades and capsule-shaped throttling elements, is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow. The swirling blades are used to transform the complex flow pattern into a forced annular flow. Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory, a formula is introduced to measure the phase-separated flow of gas and liquid. The formula requires the pressure ratio, Lockhart-Martinelli number (L-M number), and the gas phase Froude number. The unknown parameters More >

  • Open Access

    ARTICLE

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

    Aleksandr Poluyanov*, Ilya Kolesnichenko

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1553-1563, 2024, DOI:10.32604/fdmp.2024.050165 - 23 July 2024

    Abstract The article presents an experimental study on the flow of an eutectic gallium alloy in a cylindrical cell, which is placed in an alternating magnetic field. The magnetic field is generated by a coil connected to an alternating current source. The coil is located at a fixed height in such a way that its plane is perpendicular to the gravity vector, which in turn is parallel to the axis of the cylinder. The position of the cylinder can vary in height with respect to the coil. The forced flow of the considered electrically conductive liquid… More > Graphic Abstract

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

  • Open Access

    ARTICLE

    Oscillatory Dynamics of a Spherical Solid in a Liquid in an Axisymmetric Variable Cross Section Channel

    Ivan Karpunin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1219-1232, 2024, DOI:10.32604/fdmp.2024.051062 - 27 June 2024

    Abstract The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimensionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed frequency, an increase in the… More >

  • Open Access

    ARTICLE

    An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction

    Lihui Ma1,*, Zhuo Han1, Wei Li1, Guangfeng Qi1, Ran Cheng2, Yuanyuan Wang1, Xiangran Mi3, Xiaohan Zhang1, Yunfei Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1381-1392, 2024, DOI:10.32604/fdmp.2024.046405 - 27 June 2024

    Abstract When a gas-liquid two-phase flow (GLTPF) enters a parallel separator through a T-junction, it generally splits unevenly. This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream. In order to investigate these aspects and, more specifically, the so-called bias phenomenon (all gas and liquid flowing to one pipe, while the other pipe is a liquid column that fluctuates up and down), laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes. Moreover, a GLTPF prediction model based on the principle of minimum potential energy was… More >

Displaying 21-30 on page 3 of 212. Per Page